Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15554651rdf:typepubmed:Citationlld:pubmed
pubmed-article:15554651lifeskim:mentionsumls-concept:C0007447lld:lifeskim
pubmed-article:15554651lifeskim:mentionsumls-concept:C0233820lld:lifeskim
pubmed-article:15554651lifeskim:mentionsumls-concept:C1516769lld:lifeskim
pubmed-article:15554651lifeskim:mentionsumls-concept:C0007996lld:lifeskim
pubmed-article:15554651lifeskim:mentionsumls-concept:C1880157lld:lifeskim
pubmed-article:15554651pubmed:issue24lld:pubmed
pubmed-article:15554651pubmed:dateCreated2004-11-23lld:pubmed
pubmed-article:15554651pubmed:abstractTextPhosphines are traditionally considered as Lewis bases or ligands in transition metal and main group complexes. Despite their electron-rich (lone pair-bearing) nature, an extensive coordination chemistry for Lewis acidic phosphorus centers is being developed; such chemistry provides a new synthetic approach for phosphorus-element bond formation, leading to new types of structures and modes of bonding. Complexes of Ph2P+ with a variety of donor elements (P, N, C) give experimentally short donor-acceptor bond lengths, when compared to other cationic phosphorus Lewis acid complexes. We have calculated that the energy of the lowest unoccupied molecular orbital (LUMO) in Ph2P+ is lower than that of (Me2N)2P+, which partially explains the greater exothermicity of reactions of donors with the diaryl acceptor. Furthermore, the energies required to distort the diphenylphosphenium cation from its ground-state geometry are significantly smaller than those of the diamido cations and, thus, enhance the exothermicity of donor coordination. These computational data, in conjunction with evidence from experimental solid-state structures, indicate that Ph2P+ is a significantly better Lewis acid relative to the more common diaminophosphenium analogues (R2N)2P+ and are used to elucidate the nature of the bonding in donor-phosphenium complexes.lld:pubmed
pubmed-article:15554651pubmed:languageenglld:pubmed
pubmed-article:15554651pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15554651pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:15554651pubmed:monthNovlld:pubmed
pubmed-article:15554651pubmed:issn0020-1669lld:pubmed
pubmed-article:15554651pubmed:authorpubmed-author:RagognaPaul...lld:pubmed
pubmed-article:15554651pubmed:authorpubmed-author:MacdonaldChar...lld:pubmed
pubmed-article:15554651pubmed:authorpubmed-author:EllisBobby...lld:pubmed
pubmed-article:15554651pubmed:issnTypePrintlld:pubmed
pubmed-article:15554651pubmed:day29lld:pubmed
pubmed-article:15554651pubmed:volume43lld:pubmed
pubmed-article:15554651pubmed:ownerNLMlld:pubmed
pubmed-article:15554651pubmed:authorsCompleteYlld:pubmed
pubmed-article:15554651pubmed:pagination7857-67lld:pubmed
pubmed-article:15554651pubmed:year2004lld:pubmed
pubmed-article:15554651pubmed:articleTitleComputational insights into the acceptor chemistry of phosphenium cations.lld:pubmed
pubmed-article:15554651pubmed:affiliationDepartment of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.lld:pubmed
pubmed-article:15554651pubmed:publicationTypeJournal Articlelld:pubmed