Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15468274rdf:typepubmed:Citationlld:pubmed
pubmed-article:15468274lifeskim:mentionsumls-concept:C0007301lld:lifeskim
pubmed-article:15468274lifeskim:mentionsumls-concept:C0596171lld:lifeskim
pubmed-article:15468274pubmed:issue8lld:pubmed
pubmed-article:15468274pubmed:dateCreated2004-10-6lld:pubmed
pubmed-article:15468274pubmed:abstractTextA novel process was developed to fabricate biodegradable polymer scaffolds for tissue engineering applications, without using organic solvents. Solvent residues in scaffolds fabricated by processes involving organic solvents may damage cells transplanted onto the scaffolds or tissue near the transplantation site. Poly(L-lactic acid) (PLLA) powder and NaCl particles in a mold were compressed and subsequently heated at 180 degrees C (near the PLLA melting temperature) for 3 min. The heat treatment caused the polymer particles to fuse and form a continuous matrix containing entrapped NaCl particles. After dissolving the NaCl salts, which served as a porogen, porous biodegradable PLLA scaffolds were formed. The scaffold porosity and pore size were controlled by adjusting the NaCl/PLLA weight ratio and the NaCl particle size. The characteristics of the scaffolds were compared to those of scaffolds fabricated using a conventional solvent casting/particulate leaching (SC/PL) process, in terms of pore structure, pore-size distribution, and mechanical properties. A scanning electron microscopic examination showed highly interconnected and open pore structures in the scaffolds fabricated using the thermal process, whereas the SC/PL process yielded scaffolds with less interconnected and closed pore structures. Mercury intrusion porosimetry revealed that the thermally produced scaffolds had a much more uniform distribution of pore sizes than the SC/PL process. The utility of the thermally produced scaffolds was demonstrated by engineering cartilaginous tissues in vivo. In summary, the thermal process developed in this study yields tissue-engineering scaffolds with more favorable characteristics, with respect to, freedom from organic solvents, pore structure, and size distribution than the SC/PL process. Moreover, the thermal process could also be used to fabricate scaffolds from polymers that are insoluble in organic solvents, such as poly(glycolic acid). Cartilage tissue regenerated from thermally produced PLLA scaffold.lld:pubmed
pubmed-article:15468274pubmed:languageenglld:pubmed
pubmed-article:15468274pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15468274pubmed:citationSubsetIMlld:pubmed
pubmed-article:15468274pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15468274pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15468274pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15468274pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15468274pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15468274pubmed:statusMEDLINElld:pubmed
pubmed-article:15468274pubmed:monthAuglld:pubmed
pubmed-article:15468274pubmed:issn1616-5187lld:pubmed
pubmed-article:15468274pubmed:authorpubmed-author:KimYoung HaYHlld:pubmed
pubmed-article:15468274pubmed:authorpubmed-author:KimByung-SooB...lld:pubmed
pubmed-article:15468274pubmed:authorpubmed-author:KimSoo HyunSHlld:pubmed
pubmed-article:15468274pubmed:authorpubmed-author:LeeSoo-HongSHlld:pubmed
pubmed-article:15468274pubmed:authorpubmed-author:KangSun...lld:pubmed
pubmed-article:15468274pubmed:issnTypePrintlld:pubmed
pubmed-article:15468274pubmed:day9lld:pubmed
pubmed-article:15468274pubmed:volume4lld:pubmed
pubmed-article:15468274pubmed:ownerNLMlld:pubmed
pubmed-article:15468274pubmed:authorsCompleteYlld:pubmed
pubmed-article:15468274pubmed:pagination802-10lld:pubmed
pubmed-article:15468274pubmed:dateRevised2009-11-3lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:meshHeadingpubmed-meshheading:15468274...lld:pubmed
pubmed-article:15468274pubmed:year2004lld:pubmed
pubmed-article:15468274pubmed:articleTitleThermally produced biodegradable scaffolds for cartilage tissue engineering.lld:pubmed
pubmed-article:15468274pubmed:affiliationBiomaterials Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea.lld:pubmed
pubmed-article:15468274pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:15468274pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:15468274lld:pubmed