Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15387251rdf:typepubmed:Citationlld:pubmed
pubmed-article:15387251lifeskim:mentionsumls-concept:C0242406lld:lifeskim
pubmed-article:15387251lifeskim:mentionsumls-concept:C0205360lld:lifeskim
pubmed-article:15387251lifeskim:mentionsumls-concept:C1711343lld:lifeskim
pubmed-article:15387251lifeskim:mentionsumls-concept:C0936012lld:lifeskim
pubmed-article:15387251lifeskim:mentionsumls-concept:C0205421lld:lifeskim
pubmed-article:15387251lifeskim:mentionsumls-concept:C0205410lld:lifeskim
pubmed-article:15387251lifeskim:mentionsumls-concept:C2348867lld:lifeskim
pubmed-article:15387251lifeskim:mentionsumls-concept:C0348080lld:lifeskim
pubmed-article:15387251pubmed:issue1lld:pubmed
pubmed-article:15387251pubmed:dateCreated2004-9-24lld:pubmed
pubmed-article:15387251pubmed:abstractTextIn this paper, we obtain new sufficient conditions ensuring existence, uniqueness, and global asymptotic stability (GAS) of the equilibrium point for a general class of delayed neural networks (DNNs) via nonsmooth analysis, which makes full use of the Lipschitz property of functions defining DNNs. Based on this new tool of nonsmooth analysis, we first obtain a couple of general results concerning the existence and uniqueness of the equilibrium point. Then those results are applied to show that existence assumptions on the equilibrium point in some existing sufficient conditions ensuring GAS are actually unnecessary; and some strong assumptions such as the boundedness of activation functions in some other existing sufficient conditions can be actually dropped. Finally, we derive some new sufficient conditions which are easy to check. Comparison with some related existing results is conducted and advantages are illustrated with examples. Throughout our paper, spectral properties of the matrix (A + Atau) play an important role, which is a distinguished feature from previous studies. Here, A and Atau are, respectively, the feedback and the delayed feedback matrix defining the neural network under consideration.lld:pubmed
pubmed-article:15387251pubmed:languageenglld:pubmed
pubmed-article:15387251pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15387251pubmed:citationSubsetIMlld:pubmed
pubmed-article:15387251pubmed:statusMEDLINElld:pubmed
pubmed-article:15387251pubmed:monthJanlld:pubmed
pubmed-article:15387251pubmed:issn1045-9227lld:pubmed
pubmed-article:15387251pubmed:authorpubmed-author:QiHouduoHlld:pubmed
pubmed-article:15387251pubmed:authorpubmed-author:QiLiqunLlld:pubmed
pubmed-article:15387251pubmed:issnTypePrintlld:pubmed
pubmed-article:15387251pubmed:volume15lld:pubmed
pubmed-article:15387251pubmed:ownerNLMlld:pubmed
pubmed-article:15387251pubmed:authorsCompleteYlld:pubmed
pubmed-article:15387251pubmed:pagination99-109lld:pubmed
pubmed-article:15387251pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:15387251pubmed:meshHeadingpubmed-meshheading:15387251...lld:pubmed
pubmed-article:15387251pubmed:year2004lld:pubmed
pubmed-article:15387251pubmed:articleTitleDeriving sufficient conditions for global asymptotic stability of delayed neural networks via nonsmooth analysis.lld:pubmed
pubmed-article:15387251pubmed:affiliationSchool of Mathematics, The University of New South Wales, Sydney, NSW 2052, Australia.lld:pubmed
pubmed-article:15387251pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:15387251pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed