Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15312026rdf:typepubmed:Citationlld:pubmed
pubmed-article:15312026lifeskim:mentionsumls-concept:C0242225lld:lifeskim
pubmed-article:15312026lifeskim:mentionsumls-concept:C0086345lld:lifeskim
pubmed-article:15312026pubmed:issue4-5lld:pubmed
pubmed-article:15312026pubmed:dateCreated2004-8-17lld:pubmed
pubmed-article:15312026pubmed:abstractTextCommon variation in colour vision exists among both colour normal and colour deficient subjects. Differences at a few amino acid positions that influence the spectra of the L and M cone pigments account for most of this variation. The genes encoding the L and M photopigments are arranged in head-to-tail arrays on the X-chromosome, beginning with the L and followed by one or more M pigment genes. The L and M pigment genes are highly homologous, which predisposed them to unequal crossing over (recombination) resulting in gene deletions and in formation of L/M hybrid genes that encode a variety of pigments with either L-like or M-like spectra that account for the majority of colour vision defects. Only the first two pigment genes of the L/M array are expressed in the retina and, therefore, need to be considered in predicting colour vision. A common single amino acid polymorphism (serine or alanine) at position 180 of the L-pigment plays an important role both in variation in normal colour vision and in the severity of colour vision defects. Blue cone monochromacy is a rare form of colour vision deficiency that results from mutations that abolish function of both the L and M pigment genes. All the above defects are inherited as X-linked recessive traits. Tritanopia is also a rare autosomal dominant colour vision defect caused by mutations in the S pigment gene located on chromosome 7. Total colour blindness (achromatopsia or rod monochromacy) is a rare autosomal recessive trait caused by mutations in genes encoding the proteins of the photoreceptor cation channel or cone transducin that are essential for function of all classes of cone.lld:pubmed
pubmed-article:15312026pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15312026pubmed:languageenglld:pubmed
pubmed-article:15312026pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15312026pubmed:citationSubsetIMlld:pubmed
pubmed-article:15312026pubmed:statusMEDLINElld:pubmed
pubmed-article:15312026pubmed:monthJullld:pubmed
pubmed-article:15312026pubmed:issn0816-4622lld:pubmed
pubmed-article:15312026pubmed:authorpubmed-author:DeebSamir SSSlld:pubmed
pubmed-article:15312026pubmed:issnTypePrintlld:pubmed
pubmed-article:15312026pubmed:volume87lld:pubmed
pubmed-article:15312026pubmed:ownerNLMlld:pubmed
pubmed-article:15312026pubmed:authorsCompleteYlld:pubmed
pubmed-article:15312026pubmed:pagination224-9lld:pubmed
pubmed-article:15312026pubmed:dateRevised2007-11-14lld:pubmed
pubmed-article:15312026pubmed:meshHeadingpubmed-meshheading:15312026...lld:pubmed
pubmed-article:15312026pubmed:meshHeadingpubmed-meshheading:15312026...lld:pubmed
pubmed-article:15312026pubmed:meshHeadingpubmed-meshheading:15312026...lld:pubmed
pubmed-article:15312026pubmed:meshHeadingpubmed-meshheading:15312026...lld:pubmed
pubmed-article:15312026pubmed:year2004lld:pubmed
pubmed-article:15312026pubmed:articleTitleMolecular genetics of colour vision deficiencies.lld:pubmed
pubmed-article:15312026pubmed:affiliationDivision of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.lld:pubmed
pubmed-article:15312026pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:15312026pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
pubmed-article:15312026pubmed:publicationTypeReviewlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:15312026lld:pubmed