Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15250637rdf:typepubmed:Citationlld:pubmed
pubmed-article:15250637lifeskim:mentionsumls-concept:C0013516lld:lifeskim
pubmed-article:15250637lifeskim:mentionsumls-concept:C1522564lld:lifeskim
pubmed-article:15250637lifeskim:mentionsumls-concept:C0332466lld:lifeskim
pubmed-article:15250637lifeskim:mentionsumls-concept:C0546881lld:lifeskim
pubmed-article:15250637lifeskim:mentionsumls-concept:C1533716lld:lifeskim
pubmed-article:15250637lifeskim:mentionsumls-concept:C0449445lld:lifeskim
pubmed-article:15250637lifeskim:mentionsumls-concept:C0205284lld:lifeskim
pubmed-article:15250637pubmed:issue7lld:pubmed
pubmed-article:15250637pubmed:dateCreated2004-7-14lld:pubmed
pubmed-article:15250637pubmed:abstractTextUltrasound is a main noninvasive modality for the assessment of the heart function. Wall tracking from ultrasound data is, however, inherently difficult due to weak echoes, clutter, poor signal-to-noise ratio, and signal dropouts. To cope with these artifacts, pretrained shape models can be applied to constrain the tracking. However, existing methods for incorporating subspace shape constraints in myocardial border tracking use only partial information from the model distribution, and do not exploit spatially varying uncertainties from feature tracking. In this paper, we propose a complete fusion formulation in the information space for robust shape tracking, optimally resolving uncertainties from the system dynamics, heteroscedastic measurement noise, and subspace shape model. We also exploit information from the ground truth initialization where this is available. The new framework is applied for tracking of myocardial borders in very noisy echocardiography sequences. Numerous myocardium tracking experiments validate the theory and show the potential of very accurate wall motion measurements. The proposed framework outperforms the traditional shape-space-constrained tracking algorithm by a significant margin. Due to the optimal fusion of different sources of uncertainties, robust performance is observed even for the most challenging cases.lld:pubmed
pubmed-article:15250637pubmed:languageenglld:pubmed
pubmed-article:15250637pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15250637pubmed:citationSubsetIMlld:pubmed
pubmed-article:15250637pubmed:statusMEDLINElld:pubmed
pubmed-article:15250637pubmed:monthJullld:pubmed
pubmed-article:15250637pubmed:issn0278-0062lld:pubmed
pubmed-article:15250637pubmed:authorpubmed-author:SriramKrishna...lld:pubmed
pubmed-article:15250637pubmed:authorpubmed-author:ComaniciuDori...lld:pubmed
pubmed-article:15250637pubmed:authorpubmed-author:ZhouXiang...lld:pubmed
pubmed-article:15250637pubmed:issnTypePrintlld:pubmed
pubmed-article:15250637pubmed:volume23lld:pubmed
pubmed-article:15250637pubmed:ownerNLMlld:pubmed
pubmed-article:15250637pubmed:authorsCompleteYlld:pubmed
pubmed-article:15250637pubmed:pagination849-60lld:pubmed
pubmed-article:15250637pubmed:dateRevised2004-11-17lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:meshHeadingpubmed-meshheading:15250637...lld:pubmed
pubmed-article:15250637pubmed:year2004lld:pubmed
pubmed-article:15250637pubmed:articleTitleRobust real-time myocardial border tracking for echocardiography: an information fusion approach.lld:pubmed
pubmed-article:15250637pubmed:affiliationIntegrated Data Systems Department, Siemens Corporate Research, Princeton, NJ 08540, USA.lld:pubmed
pubmed-article:15250637pubmed:publicationTypeJournal Articlelld:pubmed