Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15180683rdf:typepubmed:Citationlld:pubmed
pubmed-article:15180683lifeskim:mentionsumls-concept:C0040811lld:lifeskim
pubmed-article:15180683lifeskim:mentionsumls-concept:C1511726lld:lifeskim
pubmed-article:15180683lifeskim:mentionsumls-concept:C0684321lld:lifeskim
pubmed-article:15180683lifeskim:mentionsumls-concept:C0936012lld:lifeskim
pubmed-article:15180683lifeskim:mentionsumls-concept:C2346714lld:lifeskim
pubmed-article:15180683pubmed:issue2lld:pubmed
pubmed-article:15180683pubmed:dateCreated2004-6-7lld:pubmed
pubmed-article:15180683pubmed:abstractTextMultivariate regression tree methodology is developed and illustrated in a study predicting the abundance of several cooccurring plant species in Missouri Ozark forests. The technique is a variation of the approach of Segal (1992) for longitudinal data. It has the potential to be applied to many different types of problems in which analysts want to predict the simultaneous cooccurrence of several dependent variables. Multivariate regression trees can also be used as an alternative to cluster analysis in situations where clusters are defined by a set of independent variables and the researcher wants clusters as homogeneous as possible with respect to a group of dependent variables.lld:pubmed
pubmed-article:15180683pubmed:languageenglld:pubmed
pubmed-article:15180683pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15180683pubmed:citationSubsetIMlld:pubmed
pubmed-article:15180683pubmed:statusMEDLINElld:pubmed
pubmed-article:15180683pubmed:monthJunlld:pubmed
pubmed-article:15180683pubmed:issn0006-341Xlld:pubmed
pubmed-article:15180683pubmed:authorpubmed-author:SpeckmanPaul...lld:pubmed
pubmed-article:15180683pubmed:authorpubmed-author:LarsenDavid...lld:pubmed
pubmed-article:15180683pubmed:issnTypePrintlld:pubmed
pubmed-article:15180683pubmed:volume60lld:pubmed
pubmed-article:15180683pubmed:ownerNLMlld:pubmed
pubmed-article:15180683pubmed:authorsCompleteYlld:pubmed
pubmed-article:15180683pubmed:pagination543-9lld:pubmed
pubmed-article:15180683pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:15180683pubmed:meshHeadingpubmed-meshheading:15180683...lld:pubmed
pubmed-article:15180683pubmed:meshHeadingpubmed-meshheading:15180683...lld:pubmed
pubmed-article:15180683pubmed:meshHeadingpubmed-meshheading:15180683...lld:pubmed
pubmed-article:15180683pubmed:meshHeadingpubmed-meshheading:15180683...lld:pubmed
pubmed-article:15180683pubmed:meshHeadingpubmed-meshheading:15180683...lld:pubmed
pubmed-article:15180683pubmed:meshHeadingpubmed-meshheading:15180683...lld:pubmed
pubmed-article:15180683pubmed:meshHeadingpubmed-meshheading:15180683...lld:pubmed
pubmed-article:15180683pubmed:meshHeadingpubmed-meshheading:15180683...lld:pubmed
pubmed-article:15180683pubmed:meshHeadingpubmed-meshheading:15180683...lld:pubmed
pubmed-article:15180683pubmed:year2004lld:pubmed
pubmed-article:15180683pubmed:articleTitleMultivariate regression trees for analysis of abundance data.lld:pubmed
pubmed-article:15180683pubmed:affiliationDepartment of Forestry, University of Missouri, Columbia, Missouri 65211, USA. LarsenDR@missouri.edulld:pubmed
pubmed-article:15180683pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:15180683pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:15180683lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:15180683lld:pubmed