Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15154758rdf:typepubmed:Citationlld:pubmed
pubmed-article:15154758lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:15154758lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:15154758lifeskim:mentionsumls-concept:C0036576lld:lifeskim
pubmed-article:15154758lifeskim:mentionsumls-concept:C0008902lld:lifeskim
pubmed-article:15154758lifeskim:mentionsumls-concept:C0002045lld:lifeskim
pubmed-article:15154758lifeskim:mentionsumls-concept:C0282354lld:lifeskim
pubmed-article:15154758lifeskim:mentionsumls-concept:C1705938lld:lifeskim
pubmed-article:15154758lifeskim:mentionsumls-concept:C2348519lld:lifeskim
pubmed-article:15154758lifeskim:mentionsumls-concept:C0871935lld:lifeskim
pubmed-article:15154758lifeskim:mentionsumls-concept:C1527178lld:lifeskim
pubmed-article:15154758pubmed:issue3lld:pubmed
pubmed-article:15154758pubmed:dateCreated2004-5-24lld:pubmed
pubmed-article:15154758pubmed:abstractTextThe paper describes different aspects of classification models based on molecular data sets with the focus on feature selection methods. Especially model quality and avoiding a high variance on unseen data (overfitting) will be discussed with respect to the feature selection problem. We present several standard approaches and modifications of our Genetic Algorithm based on the Shannon Entropy Cliques (GA-SEC) algorithm and the extension for classification problems using boosting.lld:pubmed
pubmed-article:15154758pubmed:languageenglld:pubmed
pubmed-article:15154758pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15154758pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:15154758pubmed:issn0095-2338lld:pubmed
pubmed-article:15154758pubmed:authorpubmed-author:ZellAndreasAlld:pubmed
pubmed-article:15154758pubmed:authorpubmed-author:WegnerJörg...lld:pubmed
pubmed-article:15154758pubmed:authorpubmed-author:FröhlichHolge...lld:pubmed
pubmed-article:15154758pubmed:issnTypePrintlld:pubmed
pubmed-article:15154758pubmed:volume44lld:pubmed
pubmed-article:15154758pubmed:ownerNLMlld:pubmed
pubmed-article:15154758pubmed:authorsCompleteYlld:pubmed
pubmed-article:15154758pubmed:pagination921-30lld:pubmed
pubmed-article:15154758pubmed:articleTitleFeature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm.lld:pubmed
pubmed-article:15154758pubmed:affiliationZentrum für Bioinformatik Tübingen (ZBIT), Universität Tübingen, Sand 1, D-72076 Tübingen, Germany. wegnerj@informatik.uni-tuebingen.delld:pubmed
pubmed-article:15154758pubmed:publicationTypeJournal Articlelld:pubmed