Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15140426rdf:typepubmed:Citationlld:pubmed
pubmed-article:15140426lifeskim:mentionsumls-concept:C2003941lld:lifeskim
pubmed-article:15140426lifeskim:mentionsumls-concept:C0024485lld:lifeskim
pubmed-article:15140426lifeskim:mentionsumls-concept:C1883073lld:lifeskim
pubmed-article:15140426lifeskim:mentionsumls-concept:C0597486lld:lifeskim
pubmed-article:15140426lifeskim:mentionsumls-concept:C0679083lld:lifeskim
pubmed-article:15140426pubmed:issue2lld:pubmed
pubmed-article:15140426pubmed:dateCreated2004-5-13lld:pubmed
pubmed-article:15140426pubmed:abstractTextTransmembrane helices are more uniform in structure than similar helices in water soluble proteins. Solid state NMR of aligned bilayer samples is being increasingly used to characterize helical membrane protein structures. Traditional spectroscopic methods have difficulty distinguishing between helices with i to i + 3 (3(10)), i to i + 4 (alpha), and i to i + 5 (pi) hydrogen bonding topology. Here, we show that resonance patterns in PISEMA spectra simulated for these different helices show unique and striking features. The size and shape of these Polar Index Slant Angle (PISA) wheels, as well as the resonances per turn and clockwise versus counter-clockwise sequential connectivity of the resonances demonstrate how these different helical structures, if present as a uniform structure, will be readily distinguished, and characterized.lld:pubmed
pubmed-article:15140426pubmed:languageenglld:pubmed
pubmed-article:15140426pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15140426pubmed:citationSubsetIMlld:pubmed
pubmed-article:15140426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15140426pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15140426pubmed:statusMEDLINElld:pubmed
pubmed-article:15140426pubmed:monthJunlld:pubmed
pubmed-article:15140426pubmed:issn1090-7807lld:pubmed
pubmed-article:15140426pubmed:authorpubmed-author:CrossT ATAlld:pubmed
pubmed-article:15140426pubmed:authorpubmed-author:KimSangukSlld:pubmed
pubmed-article:15140426pubmed:issnTypePrintlld:pubmed
pubmed-article:15140426pubmed:volume168lld:pubmed
pubmed-article:15140426pubmed:ownerNLMlld:pubmed
pubmed-article:15140426pubmed:authorsCompleteYlld:pubmed
pubmed-article:15140426pubmed:pagination187-93lld:pubmed
pubmed-article:15140426pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:15140426pubmed:meshHeadingpubmed-meshheading:15140426...lld:pubmed
pubmed-article:15140426pubmed:meshHeadingpubmed-meshheading:15140426...lld:pubmed
pubmed-article:15140426pubmed:meshHeadingpubmed-meshheading:15140426...lld:pubmed
pubmed-article:15140426pubmed:meshHeadingpubmed-meshheading:15140426...lld:pubmed
pubmed-article:15140426pubmed:meshHeadingpubmed-meshheading:15140426...lld:pubmed
pubmed-article:15140426pubmed:meshHeadingpubmed-meshheading:15140426...lld:pubmed
pubmed-article:15140426pubmed:meshHeadingpubmed-meshheading:15140426...lld:pubmed
pubmed-article:15140426pubmed:meshHeadingpubmed-meshheading:15140426...lld:pubmed
pubmed-article:15140426pubmed:meshHeadingpubmed-meshheading:15140426...lld:pubmed
pubmed-article:15140426pubmed:year2004lld:pubmed
pubmed-article:15140426pubmed:articleTitle2D solid state NMR spectral simulation of 3(10), alpha, and pi-helices.lld:pubmed
pubmed-article:15140426pubmed:affiliationNational High Magnetic Field Laboratory, Institute of Molecular Biophysics, Tallahassee, FL 32310, USA.lld:pubmed
pubmed-article:15140426pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:15140426pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:15140426pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:15140426pubmed:publicationTypeEvaluation Studieslld:pubmed
pubmed-article:15140426pubmed:publicationTypeValidation Studieslld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:15140426lld:pubmed