Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:14969497rdf:typepubmed:Citationlld:pubmed
pubmed-article:14969497lifeskim:mentionsumls-concept:C0684321lld:lifeskim
pubmed-article:14969497lifeskim:mentionsumls-concept:C0024907lld:lifeskim
pubmed-article:14969497pubmed:issue4lld:pubmed
pubmed-article:14969497pubmed:dateCreated2004-2-18lld:pubmed
pubmed-article:14969497pubmed:abstractTextWe develop semiparametric methods for matched case-control studies using regression splines. Three methods are developed: 1) an approximate cross-validation scheme to estimate the smoothing parameter inherent in regression splines, as well as 2) Monte Carlo expectation maximization (MCEM) and 3) Bayesian methods to fit the regression spline model. We compare the approximate cross-validation approach, MCEM, and Bayesian approaches using simulation, showing that they appear approximately equally efficient; the approximate cross-validation method is computationally the most convenient. An example from equine epidemiology that motivated the work is used to demonstrate our approaches.lld:pubmed
pubmed-article:14969497pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14969497pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14969497pubmed:languageenglld:pubmed
pubmed-article:14969497pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14969497pubmed:citationSubsetIMlld:pubmed
pubmed-article:14969497pubmed:statusMEDLINElld:pubmed
pubmed-article:14969497pubmed:monthDeclld:pubmed
pubmed-article:14969497pubmed:issn0006-341Xlld:pubmed
pubmed-article:14969497pubmed:authorpubmed-author:CohenNoah DNDlld:pubmed
pubmed-article:14969497pubmed:authorpubmed-author:KimInyoungIlld:pubmed
pubmed-article:14969497pubmed:authorpubmed-author:CarrollRaymon...lld:pubmed
pubmed-article:14969497pubmed:issnTypePrintlld:pubmed
pubmed-article:14969497pubmed:volume59lld:pubmed
pubmed-article:14969497pubmed:ownerNLMlld:pubmed
pubmed-article:14969497pubmed:authorsCompleteYlld:pubmed
pubmed-article:14969497pubmed:pagination1158-69lld:pubmed
pubmed-article:14969497pubmed:dateRevised2007-11-14lld:pubmed
pubmed-article:14969497pubmed:meshHeadingpubmed-meshheading:14969497...lld:pubmed
pubmed-article:14969497pubmed:meshHeadingpubmed-meshheading:14969497...lld:pubmed
pubmed-article:14969497pubmed:meshHeadingpubmed-meshheading:14969497...lld:pubmed
pubmed-article:14969497pubmed:meshHeadingpubmed-meshheading:14969497...lld:pubmed
pubmed-article:14969497pubmed:meshHeadingpubmed-meshheading:14969497...lld:pubmed
pubmed-article:14969497pubmed:meshHeadingpubmed-meshheading:14969497...lld:pubmed
pubmed-article:14969497pubmed:meshHeadingpubmed-meshheading:14969497...lld:pubmed
pubmed-article:14969497pubmed:meshHeadingpubmed-meshheading:14969497...lld:pubmed
pubmed-article:14969497pubmed:meshHeadingpubmed-meshheading:14969497...lld:pubmed
pubmed-article:14969497pubmed:year2003lld:pubmed
pubmed-article:14969497pubmed:articleTitleSemiparametric regression splines in matched case-control studies.lld:pubmed
pubmed-article:14969497pubmed:affiliationDepartment of Statistics, Texas A&M University, College Station, Texas, USA. inyoung@stat.tamu.edulld:pubmed
pubmed-article:14969497pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:14969497pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:14969497pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
pubmed-article:14969497pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:14969497lld:pubmed