pubmed-article:1480135 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:1480135 | lifeskim:mentions | umls-concept:C1522564 | lld:lifeskim |
pubmed-article:1480135 | lifeskim:mentions | umls-concept:C0028778 | lld:lifeskim |
pubmed-article:1480135 | lifeskim:mentions | umls-concept:C0040549 | lld:lifeskim |
pubmed-article:1480135 | lifeskim:mentions | umls-concept:C0288263 | lld:lifeskim |
pubmed-article:1480135 | lifeskim:mentions | umls-concept:C0037913 | lld:lifeskim |
pubmed-article:1480135 | lifeskim:mentions | umls-concept:C1510827 | lld:lifeskim |
pubmed-article:1480135 | lifeskim:mentions | umls-concept:C0308269 | lld:lifeskim |
pubmed-article:1480135 | pubmed:issue | 6 | lld:pubmed |
pubmed-article:1480135 | pubmed:dateCreated | 1993-2-8 | lld:pubmed |
pubmed-article:1480135 | pubmed:abstractText | The peptide omega-agatoxin IIIA (omega-Aga-IIIA) from venom of the funnel web spider Agelenopsis aperta blocks L-type Ca2+ channels in neurons and myocardial cells with high affinity. We report that omega-Aga-IIIA also blocks whole-cell Ca2+ channel currents in guinea pig atrial myocytes. Although other high affinity blockers of L-type Ca2+ channels are available (such as the 1,4-dihydropyridines), omega-Aga-IIIA is a valuable pharmacological tool; omega-Aga-IIIA is the only known ligand that blocks L-type Ca2+ channels with high affinity at all voltages (IC50 approximately 1 nM) and it causes little or no block of T-type Ca2+ channels, unlike the 1,4-dihydropyridines. We use omega-Aga-IIIA to selectively eliminate L-type Ca2+ currents and we show that felodipine blocks T-type Ca2+ currents. Consequently, the toxin is better than dihydropyridines for separating ionic currents through voltage-dependent Ca2+ channels and defining their physiological function. | lld:pubmed |
pubmed-article:1480135 | pubmed:language | eng | lld:pubmed |
pubmed-article:1480135 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1480135 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:1480135 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1480135 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1480135 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1480135 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1480135 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1480135 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1480135 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1480135 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:1480135 | pubmed:month | Dec | lld:pubmed |
pubmed-article:1480135 | pubmed:issn | 0026-895X | lld:pubmed |
pubmed-article:1480135 | pubmed:author | pubmed-author:SmithM MMM | lld:pubmed |
pubmed-article:1480135 | pubmed:author | pubmed-author:CohenC JCJ | lld:pubmed |
pubmed-article:1480135 | pubmed:author | pubmed-author:LeibowitzM... | lld:pubmed |
pubmed-article:1480135 | pubmed:author | pubmed-author:AdamsM EME | lld:pubmed |
pubmed-article:1480135 | pubmed:author | pubmed-author:VenemaV JVJ | lld:pubmed |
pubmed-article:1480135 | pubmed:author | pubmed-author:ErtelE AEA | lld:pubmed |
pubmed-article:1480135 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:1480135 | pubmed:volume | 42 | lld:pubmed |
pubmed-article:1480135 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:1480135 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:1480135 | pubmed:pagination | 947-51 | lld:pubmed |
pubmed-article:1480135 | pubmed:dateRevised | 2011-11-17 | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:meshHeading | pubmed-meshheading:1480135-... | lld:pubmed |
pubmed-article:1480135 | pubmed:year | 1992 | lld:pubmed |
pubmed-article:1480135 | pubmed:articleTitle | High affinity block of myocardial L-type calcium channels by the spider toxin omega-Aga-toxin IIIA: advantages over 1,4-dihydropyridines. | lld:pubmed |
pubmed-article:1480135 | pubmed:affiliation | Department of Membrane Biochemistry and Biophysics, Merck Research Laboratories, Rahway, New Jersey 07065. | lld:pubmed |
pubmed-article:1480135 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:1480135 | pubmed:publicationType | In Vitro | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1480135 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1480135 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1480135 | lld:pubmed |