Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:14699600rdf:typepubmed:Citationlld:pubmed
pubmed-article:14699600lifeskim:mentionsumls-concept:C0598941lld:lifeskim
pubmed-article:14699600lifeskim:mentionsumls-concept:C0439851lld:lifeskim
pubmed-article:14699600lifeskim:mentionsumls-concept:C0678836lld:lifeskim
pubmed-article:14699600lifeskim:mentionsumls-concept:C0205554lld:lifeskim
pubmed-article:14699600lifeskim:mentionsumls-concept:C0185125lld:lifeskim
pubmed-article:14699600lifeskim:mentionsumls-concept:C1552596lld:lifeskim
pubmed-article:14699600lifeskim:mentionsumls-concept:C1947931lld:lifeskim
pubmed-article:14699600pubmed:issue1lld:pubmed
pubmed-article:14699600pubmed:dateCreated2003-12-30lld:pubmed
pubmed-article:14699600pubmed:abstractTextAutomated cell recognition from histologic images is a very complex task. Traditionally, the image is segmented by some methods chosen to suit the image type, the objects are measured, and then a classifier is used to determine cell type from the object's measurements. Different classifiers have been used with reasonable success, including neural networks working with data from morphometric analysis.lld:pubmed
pubmed-article:14699600pubmed:languageenglld:pubmed
pubmed-article:14699600pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14699600pubmed:citationSubsetIMlld:pubmed
pubmed-article:14699600pubmed:statusMEDLINElld:pubmed
pubmed-article:14699600pubmed:monthJanlld:pubmed
pubmed-article:14699600pubmed:issn1552-4922lld:pubmed
pubmed-article:14699600pubmed:authorpubmed-author:ZhengQingQlld:pubmed
pubmed-article:14699600pubmed:authorpubmed-author:JonesAllan...lld:pubmed
pubmed-article:14699600pubmed:authorpubmed-author:MilthorpeBruc...lld:pubmed
pubmed-article:14699600pubmed:copyrightInfoCopyright 2003 Wiley-Liss, Inc.lld:pubmed
pubmed-article:14699600pubmed:issnTypePrintlld:pubmed
pubmed-article:14699600pubmed:volume57lld:pubmed
pubmed-article:14699600pubmed:ownerNLMlld:pubmed
pubmed-article:14699600pubmed:authorsCompleteYlld:pubmed
pubmed-article:14699600pubmed:pagination1-9lld:pubmed
pubmed-article:14699600pubmed:dateRevised2007-7-24lld:pubmed
pubmed-article:14699600pubmed:meshHeadingpubmed-meshheading:14699600...lld:pubmed
pubmed-article:14699600pubmed:meshHeadingpubmed-meshheading:14699600...lld:pubmed
pubmed-article:14699600pubmed:meshHeadingpubmed-meshheading:14699600...lld:pubmed
pubmed-article:14699600pubmed:meshHeadingpubmed-meshheading:14699600...lld:pubmed
pubmed-article:14699600pubmed:meshHeadingpubmed-meshheading:14699600...lld:pubmed
pubmed-article:14699600pubmed:meshHeadingpubmed-meshheading:14699600...lld:pubmed
pubmed-article:14699600pubmed:meshHeadingpubmed-meshheading:14699600...lld:pubmed
pubmed-article:14699600pubmed:year2004lld:pubmed
pubmed-article:14699600pubmed:articleTitleDirect neural network application for automated cell recognition.lld:pubmed
pubmed-article:14699600pubmed:affiliationGraduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.lld:pubmed
pubmed-article:14699600pubmed:publicationTypeJournal Articlelld:pubmed