Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:14622887rdf:typepubmed:Citationlld:pubmed
pubmed-article:14622887lifeskim:mentionsumls-concept:C1179435lld:lifeskim
pubmed-article:14622887lifeskim:mentionsumls-concept:C0085862lld:lifeskim
pubmed-article:14622887lifeskim:mentionsumls-concept:C1511726lld:lifeskim
pubmed-article:14622887lifeskim:mentionsumls-concept:C1299583lld:lifeskim
pubmed-article:14622887lifeskim:mentionsumls-concept:C0439855lld:lifeskim
pubmed-article:14622887lifeskim:mentionsumls-concept:C0936012lld:lifeskim
pubmed-article:14622887lifeskim:mentionsumls-concept:C1705248lld:lifeskim
pubmed-article:14622887lifeskim:mentionsumls-concept:C1608386lld:lifeskim
pubmed-article:14622887lifeskim:mentionsumls-concept:C1548799lld:lifeskim
pubmed-article:14622887lifeskim:mentionsumls-concept:C1549571lld:lifeskim
pubmed-article:14622887lifeskim:mentionsumls-concept:C1524073lld:lifeskim
pubmed-article:14622887lifeskim:mentionsumls-concept:C0449432lld:lifeskim
pubmed-article:14622887pubmed:issue9lld:pubmed
pubmed-article:14622887pubmed:dateCreated2003-11-19lld:pubmed
pubmed-article:14622887pubmed:abstractTextIndependent component analysis (ICA) has proven useful for modeling brain and electroencephalographic (EEG) data. Here, we present a new, generalized method to better capture the dynamics of brain signals than previous ICA algorithms. We regard EEG sources as eliciting spatio-temporal activity patterns, corresponding to, e.g. trajectories of activation propagating across cortex. This leads to a model of convolutive signal superposition, in contrast with the commonly used instantaneous mixing model. In the frequency-domain, convolutive mixing is equivalent to multiplicative mixing of complex signal sources within distinct spectral bands. We decompose the recorded spectral-domain signals into independent components by a complex infomax ICA algorithm. First results from a visual attention EEG experiment exhibit: (1). sources of spatio-temporal dynamics in the data, (2). links to subject behavior, (3). sources with a limited spectral extent, and (4). a higher degree of independence compared to sources derived by standard ICA.lld:pubmed
pubmed-article:14622887pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14622887pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14622887pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14622887pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14622887pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14622887pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14622887pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14622887pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14622887pubmed:languageenglld:pubmed
pubmed-article:14622887pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:14622887pubmed:citationSubsetIMlld:pubmed
pubmed-article:14622887pubmed:statusMEDLINElld:pubmed
pubmed-article:14622887pubmed:monthNovlld:pubmed
pubmed-article:14622887pubmed:issn0893-6080lld:pubmed
pubmed-article:14622887pubmed:authorpubmed-author:MakeigScottSlld:pubmed
pubmed-article:14622887pubmed:authorpubmed-author:SejnowskiTerr...lld:pubmed
pubmed-article:14622887pubmed:authorpubmed-author:AnemüllerJörn...lld:pubmed
pubmed-article:14622887pubmed:issnTypePrintlld:pubmed
pubmed-article:14622887pubmed:volume16lld:pubmed
pubmed-article:14622887pubmed:ownerNLMlld:pubmed
pubmed-article:14622887pubmed:authorsCompleteYlld:pubmed
pubmed-article:14622887pubmed:pagination1311-23lld:pubmed
pubmed-article:14622887pubmed:dateRevised2010-9-20lld:pubmed
pubmed-article:14622887pubmed:meshHeadingpubmed-meshheading:14622887...lld:pubmed
pubmed-article:14622887pubmed:meshHeadingpubmed-meshheading:14622887...lld:pubmed
pubmed-article:14622887pubmed:meshHeadingpubmed-meshheading:14622887...lld:pubmed
pubmed-article:14622887pubmed:year2003lld:pubmed
pubmed-article:14622887pubmed:articleTitleComplex independent component analysis of frequency-domain electroencephalographic data.lld:pubmed
pubmed-article:14622887pubmed:affiliationSwartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, 9500 Gilman Dr, Dept 0961, La Jolla, CA 92093-0961, USA. jorn@salk.edulld:pubmed
pubmed-article:14622887pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:14622887pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:14622887lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:14622887lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:14622887lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:14622887lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:14622887lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:14622887lld:pubmed