pubmed-article:14568453 | pubmed:abstractText | Statistical parametric mapping (SPM), relying on the general linear model and classical hypothesis testing, is a benchmark tool for assessing human brain activity using data from fMRI experiments. Friston et al. discuss some limitations of this frequentist approach and point out promising Bayesian perspectives. In particular, a Bayesian formulation allows explicit modeling and estimation of activation probabilities. In this study, we directly address this issue and develop a new regression based approach using spatial Bayesian variable selection. Our method has several advantages. First, spatial correlation is directly modeled for activation probabilities and indirectly for activation amplitudes. As a consequence, there is no need for spatial adjustment in a postprocessing step. Second, anatomical prior information, such as the distribution of grey matter or expert knowledge, can be included as part of the model. Third, the method has superior edge-preservation properties as well as being fast to compute. When applied to data from a simple visual experiment, the results demonstrate improved sensitivity for detecting activated cortical areas and for better preserving details of activated structures. | lld:pubmed |