Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:12827219rdf:typepubmed:Citationlld:pubmed
pubmed-article:12827219lifeskim:mentionsumls-concept:C0521009lld:lifeskim
pubmed-article:12827219lifeskim:mentionsumls-concept:C0699900lld:lifeskim
pubmed-article:12827219lifeskim:mentionsumls-concept:C0243125lld:lifeskim
pubmed-article:12827219lifeskim:mentionsumls-concept:C1311768lld:lifeskim
pubmed-article:12827219lifeskim:mentionsumls-concept:C0052420lld:lifeskim
pubmed-article:12827219pubmed:issue2lld:pubmed
pubmed-article:12827219pubmed:dateCreated2003-8-4lld:pubmed
pubmed-article:12827219pubmed:abstractTextMicroorganisms from Mytilus edulis (marine mussel) degraded arsenobetaine, with the formation of trimethylarsine oxide, dimethylarsinate and methylarsonate. Four bacterial isolates from these mixed-cultures were shown by HPLC/hydride generation-atomic fluorescence spectroscopy (HPLC/HG-AFS) analysis to degrade arsenobetaine to dimethylarsinate in pure culture; there was no evidence of trimethylarsine oxide formation. Two of the isolates ( Paenibacillussp. strain 13943 and Pseudomonas sp. strain 13944) were shown by HPLC/inductively coupled plasma-mass spectrometry (HPLC/ICPMS) analysis to degrade arsenobetaine by initial cleavage of a methyl-arsenic bond to form dimethylarsinoylacetate, with subsequent cleavage of the carboxymethyl-arsenic bond to yield dimethylarsinate. Arsenobetaine biodegradation by pure cultures was biphasic, with dimethylarsinoylacetate accumulating in culture supernatants during the culture growth phase and its removal accompanying dimethylarsinate formation during a carbon-limited stationary phase. The Paenibacillus sp. also converted exogenously supplied dimethylarsinoylacetate to dimethylarsinate only under carbon-limited conditions. Lysed-cell extracts of the Paenibacillus sp. showed constitutive expression of enzyme(s) capable of arsenobetaine degradation through methyl-arsenic and carboxymethyl-arsenic bond cleavage. The work establishes the capability of particular bacteria to cleave both types of arsenic-carbon bonds of arsenobetaine and demonstrates that mixed-community functioning is not an obligate requirement for arsenobetaine biodegradation.lld:pubmed
pubmed-article:12827219pubmed:languageenglld:pubmed
pubmed-article:12827219pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12827219pubmed:citationSubsetIMlld:pubmed
pubmed-article:12827219pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12827219pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12827219pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12827219pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12827219pubmed:statusMEDLINElld:pubmed
pubmed-article:12827219pubmed:monthAuglld:pubmed
pubmed-article:12827219pubmed:issn0302-8933lld:pubmed
pubmed-article:12827219pubmed:authorpubmed-author:GoesslerWalte...lld:pubmed
pubmed-article:12827219pubmed:authorpubmed-author:EdmondsJohn...lld:pubmed
pubmed-article:12827219pubmed:authorpubmed-author:JenkinsRichar...lld:pubmed
pubmed-article:12827219pubmed:authorpubmed-author:KuehneltDoris...lld:pubmed
pubmed-article:12827219pubmed:authorpubmed-author:RitchieAlisda...lld:pubmed
pubmed-article:12827219pubmed:authorpubmed-author:MolenatNathal...lld:pubmed
pubmed-article:12827219pubmed:authorpubmed-author:HarringtonChr...lld:pubmed
pubmed-article:12827219pubmed:authorpubmed-author:SuttonPeter...lld:pubmed
pubmed-article:12827219pubmed:issnTypePrintlld:pubmed
pubmed-article:12827219pubmed:volume180lld:pubmed
pubmed-article:12827219pubmed:ownerNLMlld:pubmed
pubmed-article:12827219pubmed:authorsCompleteYlld:pubmed
pubmed-article:12827219pubmed:pagination142-50lld:pubmed
pubmed-article:12827219pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:12827219pubmed:meshHeadingpubmed-meshheading:12827219...lld:pubmed
pubmed-article:12827219pubmed:meshHeadingpubmed-meshheading:12827219...lld:pubmed
pubmed-article:12827219pubmed:meshHeadingpubmed-meshheading:12827219...lld:pubmed
pubmed-article:12827219pubmed:meshHeadingpubmed-meshheading:12827219...lld:pubmed
pubmed-article:12827219pubmed:meshHeadingpubmed-meshheading:12827219...lld:pubmed
pubmed-article:12827219pubmed:meshHeadingpubmed-meshheading:12827219...lld:pubmed
pubmed-article:12827219pubmed:meshHeadingpubmed-meshheading:12827219...lld:pubmed
pubmed-article:12827219pubmed:meshHeadingpubmed-meshheading:12827219...lld:pubmed
pubmed-article:12827219pubmed:meshHeadingpubmed-meshheading:12827219...lld:pubmed
pubmed-article:12827219pubmed:meshHeadingpubmed-meshheading:12827219...lld:pubmed
pubmed-article:12827219pubmed:meshHeadingpubmed-meshheading:12827219...lld:pubmed
pubmed-article:12827219pubmed:year2003lld:pubmed
pubmed-article:12827219pubmed:articleTitleBacterial degradation of arsenobetaine via dimethylarsinoylacetate.lld:pubmed
pubmed-article:12827219pubmed:affiliationSchool of Molecular Science, De Montfort University, The Gateway, LE1 9BH, Leicester, UK. roj@dmu.ac.uklld:pubmed
pubmed-article:12827219pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:12827219pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed