Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:12816576rdf:typepubmed:Citationlld:pubmed
pubmed-article:12816576lifeskim:mentionsumls-concept:C0008976lld:lifeskim
pubmed-article:12816576lifeskim:mentionsumls-concept:C1552514lld:lifeskim
pubmed-article:12816576lifeskim:mentionsumls-concept:C0336809lld:lifeskim
pubmed-article:12816576pubmed:issue6lld:pubmed
pubmed-article:12816576pubmed:dateCreated2003-6-20lld:pubmed
pubmed-article:12816576pubmed:abstractTextNeuronal information processing is often studied on the basis of spiking patterns. The relevant statistics such as firing rates calculated with the peri-stimulus time histogram are obtained by averaging spiking patterns over many experimental runs. However, animals should respond to one experimental stimulation in real situations, and what is available to the brain is not the trial statistics but the population statistics. Consequently, physiological ergodicity, namely, the consistency between trial averaging and population averaging, is implicitly assumed in the data analyses, although it does not trivially hold true. In this letter, we investigate how characteristics of noisy neural network models, such as single neuron properties, external stimuli, and synaptic inputs, affect the statistics of firing patterns. In particular, we show that how high membrane potential sensitivity to input fluctuations, inability of neurons to remember past inputs, external stimuli with large variability and temporally separated peaks, and relatively few contributions of synaptic inputs result in spike trains that are reproducible over many trials. The reproducibility of spike trains and synchronous firing are contrasted and related to the ergodicity issue. Several numerical calculations with neural network examples are carried out to support the theoretical results.lld:pubmed
pubmed-article:12816576pubmed:languageenglld:pubmed
pubmed-article:12816576pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12816576pubmed:citationSubsetIMlld:pubmed
pubmed-article:12816576pubmed:statusMEDLINElld:pubmed
pubmed-article:12816576pubmed:monthJunlld:pubmed
pubmed-article:12816576pubmed:issn0899-7667lld:pubmed
pubmed-article:12816576pubmed:authorpubmed-author:MasudaNaokiNlld:pubmed
pubmed-article:12816576pubmed:authorpubmed-author:AiharaKazuyuk...lld:pubmed
pubmed-article:12816576pubmed:issnTypePrintlld:pubmed
pubmed-article:12816576pubmed:volume15lld:pubmed
pubmed-article:12816576pubmed:ownerNLMlld:pubmed
pubmed-article:12816576pubmed:authorsCompleteYlld:pubmed
pubmed-article:12816576pubmed:pagination1341-72lld:pubmed
pubmed-article:12816576pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:12816576pubmed:meshHeadingpubmed-meshheading:12816576...lld:pubmed
pubmed-article:12816576pubmed:meshHeadingpubmed-meshheading:12816576...lld:pubmed
pubmed-article:12816576pubmed:meshHeadingpubmed-meshheading:12816576...lld:pubmed
pubmed-article:12816576pubmed:meshHeadingpubmed-meshheading:12816576...lld:pubmed
pubmed-article:12816576pubmed:meshHeadingpubmed-meshheading:12816576...lld:pubmed
pubmed-article:12816576pubmed:meshHeadingpubmed-meshheading:12816576...lld:pubmed
pubmed-article:12816576pubmed:year2003lld:pubmed
pubmed-article:12816576pubmed:articleTitleErgodicity of spike trains: when does trial averaging make sense?lld:pubmed
pubmed-article:12816576pubmed:affiliationDepartment of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Japan. masuda@sat.t.u-tokyo.ac.jplld:pubmed
pubmed-article:12816576pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:12816576pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:12816576lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:12816576lld:pubmed