Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:12785907rdf:typepubmed:Citationlld:pubmed
pubmed-article:12785907lifeskim:mentionsumls-concept:C0333562lld:lifeskim
pubmed-article:12785907lifeskim:mentionsumls-concept:C1521991lld:lifeskim
pubmed-article:12785907lifeskim:mentionsumls-concept:C1441759lld:lifeskim
pubmed-article:12785907lifeskim:mentionsumls-concept:C0747055lld:lifeskim
pubmed-article:12785907lifeskim:mentionsumls-concept:C2347880lld:lifeskim
pubmed-article:12785907lifeskim:mentionsumls-concept:C0205250lld:lifeskim
pubmed-article:12785907lifeskim:mentionsumls-concept:C1705178lld:lifeskim
pubmed-article:12785907lifeskim:mentionsumls-concept:C1705176lld:lifeskim
pubmed-article:12785907pubmed:issue20lld:pubmed
pubmed-article:12785907pubmed:dateCreated2003-6-5lld:pubmed
pubmed-article:12785907pubmed:abstractTextWe use a seeded supersonic molecular beam to control the kinetic energy of pentacene (C22H14) during deposition and growth on Ag(111). Highly ordered thin films are grown at low substrate temperatures (approximately 200 K) at kinetic energies of a few electron volts, as shown by low energy He diffraction and x-ray reflectivity spectra. In contrast, deposition of thermal molecules yields only amorphous films. Growth at room or higher temperature substrates yields films of poorer quality irrespective of the depositing beam energy. We find that after the first wetting layer is completed, a new ordered phase is formed, whose in-plane lattice spacings match one of the bulk crystal planes. The high quality of the films can be interpreted as the result of local annealing induced by the impact of the impinging high-energy molecules.lld:pubmed
pubmed-article:12785907pubmed:languageenglld:pubmed
pubmed-article:12785907pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12785907pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:12785907pubmed:monthMaylld:pubmed
pubmed-article:12785907pubmed:issn0031-9007lld:pubmed
pubmed-article:12785907pubmed:authorpubmed-author:BraccoGGlld:pubmed
pubmed-article:12785907pubmed:authorpubmed-author:NickelBBlld:pubmed
pubmed-article:12785907pubmed:authorpubmed-author:ScolesGGlld:pubmed
pubmed-article:12785907pubmed:authorpubmed-author:CasalisLLlld:pubmed
pubmed-article:12785907pubmed:authorpubmed-author:DanismanM FMFlld:pubmed
pubmed-article:12785907pubmed:authorpubmed-author:ToccoliTTlld:pubmed
pubmed-article:12785907pubmed:authorpubmed-author:IannottaSSlld:pubmed
pubmed-article:12785907pubmed:issnTypePrintlld:pubmed
pubmed-article:12785907pubmed:day23lld:pubmed
pubmed-article:12785907pubmed:volume90lld:pubmed
pubmed-article:12785907pubmed:ownerNLMlld:pubmed
pubmed-article:12785907pubmed:authorsCompleteYlld:pubmed
pubmed-article:12785907pubmed:pagination206101lld:pubmed
pubmed-article:12785907pubmed:year2003lld:pubmed
pubmed-article:12785907pubmed:articleTitleHyperthermal molecular beam deposition of highly ordered organic thin films.lld:pubmed
pubmed-article:12785907pubmed:affiliationDepartment of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.lld:pubmed
pubmed-article:12785907pubmed:publicationTypeJournal Articlelld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:12785907lld:pubmed