pubmed-article:12783489 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:12783489 | lifeskim:mentions | umls-concept:C0036025 | lld:lifeskim |
pubmed-article:12783489 | lifeskim:mentions | umls-concept:C0205474 | lld:lifeskim |
pubmed-article:12783489 | lifeskim:mentions | umls-concept:C0001962 | lld:lifeskim |
pubmed-article:12783489 | lifeskim:mentions | umls-concept:C0033268 | lld:lifeskim |
pubmed-article:12783489 | lifeskim:mentions | umls-concept:C0185125 | lld:lifeskim |
pubmed-article:12783489 | lifeskim:mentions | umls-concept:C0033349 | lld:lifeskim |
pubmed-article:12783489 | lifeskim:mentions | umls-concept:C2698650 | lld:lifeskim |
pubmed-article:12783489 | pubmed:issue | 3 | lld:pubmed |
pubmed-article:12783489 | pubmed:dateCreated | 2003-6-3 | lld:pubmed |
pubmed-article:12783489 | pubmed:abstractText | In this study we present a method for simultaneous optimization of several metabolic responses of biochemical pathways. The method, based on the use of the power law formalism to obtain a linear system in logarithmic coordinates, is applied to ethanol production by Saccharomyces cerevisiae. Starting from an experimentally based kinetic model, we translated it to its power law equivalent. With this new model representation, we then applied the multiobjective optimization method. Our intent was to maximize ethanol production and minimize each of the internal metabolite concentrations. To ensure cell viability, all optimizations were carried out under imposed constraints. The different solutions obtained, which correspond to alternative patterns of enzyme overexpression, were implemented in the original model. We discovered few discrepancies between the S-system-optimized steady state and the corresponding optimized state in the original kinetic model, thus demonstrating the suitability of the S-system representation as the basis for the optimization procedure. In all optimized solutions, the ATP level reached its maximum and any increase in its activity positively affected the optimization process. This work illustrates that in any optimization study no single criteria is of general application being the multiobjective and constrained task the proper way to address it. It is concluded that the proposed multiobjective method can serve to carry out, in a single study, the general pattern of behavior of a given metabolic system with regard to its control and optimization. | lld:pubmed |
pubmed-article:12783489 | pubmed:language | eng | lld:pubmed |
pubmed-article:12783489 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:12783489 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:12783489 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:12783489 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:12783489 | pubmed:month | Aug | lld:pubmed |
pubmed-article:12783489 | pubmed:issn | 0006-3592 | lld:pubmed |
pubmed-article:12783489 | pubmed:author | pubmed-author:CascanteMarta... | lld:pubmed |
pubmed-article:12783489 | pubmed:author | pubmed-author:de... | lld:pubmed |
pubmed-article:12783489 | pubmed:author | pubmed-author:TorresNéstor... | lld:pubmed |
pubmed-article:12783489 | pubmed:author | pubmed-author:VeraJulioJ | lld:pubmed |
pubmed-article:12783489 | pubmed:copyrightInfo | Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 335-343, 2003. | lld:pubmed |
pubmed-article:12783489 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:12783489 | pubmed:day | 5 | lld:pubmed |
pubmed-article:12783489 | pubmed:volume | 83 | lld:pubmed |
pubmed-article:12783489 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:12783489 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:12783489 | pubmed:pagination | 335-43 | lld:pubmed |
pubmed-article:12783489 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:12783489 | pubmed:meshHeading | pubmed-meshheading:12783489... | lld:pubmed |
pubmed-article:12783489 | pubmed:meshHeading | pubmed-meshheading:12783489... | lld:pubmed |
pubmed-article:12783489 | pubmed:meshHeading | pubmed-meshheading:12783489... | lld:pubmed |
pubmed-article:12783489 | pubmed:meshHeading | pubmed-meshheading:12783489... | lld:pubmed |
pubmed-article:12783489 | pubmed:meshHeading | pubmed-meshheading:12783489... | lld:pubmed |
pubmed-article:12783489 | pubmed:meshHeading | pubmed-meshheading:12783489... | lld:pubmed |
pubmed-article:12783489 | pubmed:meshHeading | pubmed-meshheading:12783489... | lld:pubmed |
pubmed-article:12783489 | pubmed:meshHeading | pubmed-meshheading:12783489... | lld:pubmed |
pubmed-article:12783489 | pubmed:meshHeading | pubmed-meshheading:12783489... | lld:pubmed |
pubmed-article:12783489 | pubmed:meshHeading | pubmed-meshheading:12783489... | lld:pubmed |
pubmed-article:12783489 | pubmed:meshHeading | pubmed-meshheading:12783489... | lld:pubmed |
pubmed-article:12783489 | pubmed:year | 2003 | lld:pubmed |
pubmed-article:12783489 | pubmed:articleTitle | Multicriteria optimization of biochemical systems by linear programming: application to production of ethanol by Saccharomyces cerevisiae. | lld:pubmed |
pubmed-article:12783489 | pubmed:affiliation | Grupo Tecnología Bioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Islas Canarias, España. | lld:pubmed |
pubmed-article:12783489 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:12783489 | pubmed:publicationType | Comparative Study | lld:pubmed |
pubmed-article:12783489 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
pubmed-article:12783489 | pubmed:publicationType | Evaluation Studies | lld:pubmed |
pubmed-article:12783489 | pubmed:publicationType | Validation Studies | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:12783489 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:12783489 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:12783489 | lld:pubmed |