Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:12627644rdf:typepubmed:Citationlld:pubmed
pubmed-article:12627644lifeskim:mentionsumls-concept:C1550099lld:lifeskim
pubmed-article:12627644lifeskim:mentionsumls-concept:C0600688lld:lifeskim
pubmed-article:12627644lifeskim:mentionsumls-concept:C0206031lld:lifeskim
pubmed-article:12627644lifeskim:mentionsumls-concept:C0449445lld:lifeskim
pubmed-article:12627644pubmed:issue3lld:pubmed
pubmed-article:12627644pubmed:dateCreated2003-3-11lld:pubmed
pubmed-article:12627644pubmed:abstractTextThe question posed in this article is how useful the chemical concentration measurements for predicting the outcome of sediment toxicity tests are. Using matched data on sediment toxicity and sediment chemical concentrations from a number of studies, we investigated several approaches for predicting toxicity based on multiple logistic regression with concentration-addition models. Three models were found to meet criteria for acceptability. The first model uses individual chemicals selected using stepwise selection. The second uses derived variables to reflect combined metal contamination, polycyclic aromatic hydrocarbon (PAH) contamination, and the interaction between metals and PAHs. The third and final model is a separate species model with derived variables. Overall, these models suggest that toxicity may be correctly predicted approximately 77% of the time, although prediction is better for samples identified as nontoxic than for those known to be toxic.lld:pubmed
pubmed-article:12627644pubmed:languageenglld:pubmed
pubmed-article:12627644pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12627644pubmed:citationSubsetIMlld:pubmed
pubmed-article:12627644pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12627644pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12627644pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12627644pubmed:statusMEDLINElld:pubmed
pubmed-article:12627644pubmed:monthMarlld:pubmed
pubmed-article:12627644pubmed:issn0730-7268lld:pubmed
pubmed-article:12627644pubmed:authorpubmed-author:SmithEric PEPlld:pubmed
pubmed-article:12627644pubmed:authorpubmed-author:NortonSusan...lld:pubmed
pubmed-article:12627644pubmed:authorpubmed-author:RobinsonTimTlld:pubmed
pubmed-article:12627644pubmed:authorpubmed-author:FieldL JayLJlld:pubmed
pubmed-article:12627644pubmed:issnTypePrintlld:pubmed
pubmed-article:12627644pubmed:volume22lld:pubmed
pubmed-article:12627644pubmed:ownerNLMlld:pubmed
pubmed-article:12627644pubmed:authorsCompleteYlld:pubmed
pubmed-article:12627644pubmed:pagination565-75lld:pubmed
pubmed-article:12627644pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:12627644pubmed:meshHeadingpubmed-meshheading:12627644...lld:pubmed
pubmed-article:12627644pubmed:meshHeadingpubmed-meshheading:12627644...lld:pubmed
pubmed-article:12627644pubmed:meshHeadingpubmed-meshheading:12627644...lld:pubmed
pubmed-article:12627644pubmed:meshHeadingpubmed-meshheading:12627644...lld:pubmed
pubmed-article:12627644pubmed:meshHeadingpubmed-meshheading:12627644...lld:pubmed
pubmed-article:12627644pubmed:meshHeadingpubmed-meshheading:12627644...lld:pubmed
pubmed-article:12627644pubmed:meshHeadingpubmed-meshheading:12627644...lld:pubmed
pubmed-article:12627644pubmed:meshHeadingpubmed-meshheading:12627644...lld:pubmed
pubmed-article:12627644pubmed:meshHeadingpubmed-meshheading:12627644...lld:pubmed
pubmed-article:12627644pubmed:year2003lld:pubmed
pubmed-article:12627644pubmed:articleTitlePredicting sediment toxicity using logistic regression: a concentration-addition approach.lld:pubmed
pubmed-article:12627644pubmed:affiliationDepartment of Statistics, Virginia Tech, Blacksburg, Virginia 24061-0439, USA. epsmith@vt.edulld:pubmed
pubmed-article:12627644pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:12627644pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed