Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:12557530rdf:typepubmed:Citationlld:pubmed
pubmed-article:12557530lifeskim:mentionsumls-concept:C0007634lld:lifeskim
pubmed-article:12557530lifeskim:mentionsumls-concept:C0039421lld:lifeskim
pubmed-article:12557530lifeskim:mentionsumls-concept:C1442792lld:lifeskim
pubmed-article:12557530lifeskim:mentionsumls-concept:C1527148lld:lifeskim
pubmed-article:12557530lifeskim:mentionsumls-concept:C2697664lld:lifeskim
pubmed-article:12557530pubmed:issue3lld:pubmed
pubmed-article:12557530pubmed:dateCreated2003-1-31lld:pubmed
pubmed-article:12557530pubmed:abstractTextThis paper describes the state and the development of the application of the modern and traditional image segmentation technology in cell slice image segmentation. It includes edge detection, regional segmentation, wavelet transform, fuzzy mathematics, artificial neural networks, morphological image segmentation and so on. At last, the paper summaries that it is difficult to generally segmentate any kind of biological cell slice image automatically because of the complex structure of cell and cell slice image is not even gray distributed. It should be pointed out that general automatic cell slice image segmentation will be achieved only if visual mathematics model corresponding to mammalian vision systems is setup entirely.lld:pubmed
pubmed-article:12557530pubmed:languagechilld:pubmed
pubmed-article:12557530pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12557530pubmed:citationSubsetIMlld:pubmed
pubmed-article:12557530pubmed:statusMEDLINElld:pubmed
pubmed-article:12557530pubmed:monthSeplld:pubmed
pubmed-article:12557530pubmed:issn1001-5515lld:pubmed
pubmed-article:12557530pubmed:authorpubmed-author:ZHUKAAlld:pubmed
pubmed-article:12557530pubmed:authorpubmed-author:LianLiLlld:pubmed
pubmed-article:12557530pubmed:authorpubmed-author:DaiRolanRlld:pubmed
pubmed-article:12557530pubmed:authorpubmed-author:WuChenghuClld:pubmed
pubmed-article:12557530pubmed:issnTypePrintlld:pubmed
pubmed-article:12557530pubmed:volume19lld:pubmed
pubmed-article:12557530pubmed:ownerNLMlld:pubmed
pubmed-article:12557530pubmed:authorsCompleteYlld:pubmed
pubmed-article:12557530pubmed:pagination487-92lld:pubmed
pubmed-article:12557530pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:12557530pubmed:meshHeadingpubmed-meshheading:12557530...lld:pubmed
pubmed-article:12557530pubmed:meshHeadingpubmed-meshheading:12557530...lld:pubmed
pubmed-article:12557530pubmed:meshHeadingpubmed-meshheading:12557530...lld:pubmed
pubmed-article:12557530pubmed:meshHeadingpubmed-meshheading:12557530...lld:pubmed
pubmed-article:12557530pubmed:meshHeadingpubmed-meshheading:12557530...lld:pubmed
pubmed-article:12557530pubmed:year2002lld:pubmed
pubmed-article:12557530pubmed:articleTitle[The state and development of cell image segmentation technology].lld:pubmed
pubmed-article:12557530pubmed:affiliationState Key Laboratory of Arid Agroecology, School of Information Science & Engineering of Lanzhou University, Lanzhou 730000.lld:pubmed
pubmed-article:12557530pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:12557530pubmed:publicationTypeEnglish Abstractlld:pubmed
pubmed-article:12557530pubmed:publicationTypeReviewlld:pubmed
pubmed-article:12557530pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed