Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:12368851rdf:typepubmed:Citationlld:pubmed
pubmed-article:12368851lifeskim:mentionsumls-concept:C0684021lld:lifeskim
pubmed-article:12368851lifeskim:mentionsumls-concept:C0030015lld:lifeskim
pubmed-article:12368851lifeskim:mentionsumls-concept:C0205322lld:lifeskim
pubmed-article:12368851lifeskim:mentionsumls-concept:C0013850lld:lifeskim
pubmed-article:12368851lifeskim:mentionsumls-concept:C0439836lld:lifeskim
pubmed-article:12368851lifeskim:mentionsumls-concept:C0205269lld:lifeskim
pubmed-article:12368851pubmed:issue6906lld:pubmed
pubmed-article:12368851pubmed:dateCreated2002-10-7lld:pubmed
pubmed-article:12368851pubmed:abstractTextMaterials that are good electrical conductors are not in general optically transparent, yet a combination of high conductivity and transparency is desirable for many emerging opto-electronic applications. To this end, various transparent oxides composed of transition or post-transition metals (such as indium tin oxide) are rendered electrically conducting by ion doping. But such an approach does not work for the abundant transparent oxides of the main-group metals. Here we demonstrate a process by which the transparent insulating oxide 12CaO x 7Al(2)O(3) (refs 7-13) can be converted into an electrical conductor. H(-) ions are incorporated into the subnanometre-sized cages of the oxide by a thermal treatment in a hydrogen atmosphere; subsequent irradiation of the material with ultraviolet light results in a conductive state that persists after irradiation ceases. The photo-activated material exhibits moderate electrical conductivity (approximately 0.3 S cm(-1)) at room temperature, with visible light absorption losses of only one per cent for 200-nm-thick films. We suggest that this concept can be applied to other main-group metal oxides, for the direct optical writing of conducting wires in insulating transparent media and the formation of a high-density optical memory.lld:pubmed
pubmed-article:12368851pubmed:languageenglld:pubmed
pubmed-article:12368851pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12368851pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:12368851pubmed:monthOctlld:pubmed
pubmed-article:12368851pubmed:issn0028-0836lld:pubmed
pubmed-article:12368851pubmed:authorpubmed-author:HayashiKatsur...lld:pubmed
pubmed-article:12368851pubmed:authorpubmed-author:HiranoMasahir...lld:pubmed
pubmed-article:12368851pubmed:authorpubmed-author:MatsuishiSato...lld:pubmed
pubmed-article:12368851pubmed:authorpubmed-author:HosonoHideoHlld:pubmed
pubmed-article:12368851pubmed:authorpubmed-author:KamiyaToshioTlld:pubmed
pubmed-article:12368851pubmed:issnTypePrintlld:pubmed
pubmed-article:12368851pubmed:day3lld:pubmed
pubmed-article:12368851pubmed:volume419lld:pubmed
pubmed-article:12368851pubmed:ownerNLMlld:pubmed
pubmed-article:12368851pubmed:authorsCompleteYlld:pubmed
pubmed-article:12368851pubmed:pagination462-5lld:pubmed
pubmed-article:12368851pubmed:dateRevised2003-11-3lld:pubmed
pubmed-article:12368851pubmed:year2002lld:pubmed
pubmed-article:12368851pubmed:articleTitleLight-induced conversion of an insulating refractory oxide into a persistent electronic conductor.lld:pubmed
pubmed-article:12368851pubmed:affiliationTransparent Electro-Active Materials Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, KSP C-1232, 3-2-1 Sakado, Tatatsu-ku, Kawasaki 213-0012, Japan. k-hayashi@net.ksp.or.jplld:pubmed
pubmed-article:12368851pubmed:publicationTypeJournal Articlelld:pubmed