Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:12034014rdf:typepubmed:Citationlld:pubmed
pubmed-article:12034014lifeskim:mentionsumls-concept:C0392747lld:lifeskim
pubmed-article:12034014lifeskim:mentionsumls-concept:C2587213lld:lifeskim
pubmed-article:12034014lifeskim:mentionsumls-concept:C0023981lld:lifeskim
pubmed-article:12034014lifeskim:mentionsumls-concept:C0443172lld:lifeskim
pubmed-article:12034014pubmed:issuePt 1lld:pubmed
pubmed-article:12034014pubmed:dateCreated2002-5-29lld:pubmed
pubmed-article:12034014pubmed:abstractTextThis paper examines the implications of the correlational structure of repeated measurements for three indices of change that can be used to evaluate treatment effects in longitudinal studies with scheduled assessment times and fixed total duration. The generalized least squares (GLS) regression of repeated measurements on time, which is usually reserved for complex mixed model solutions, takes the correlational structure of the repeated measurements into account, whereas simple gain scores and ordinary least squares (OLS) regression calculations do not. Nevertheless, the GLS solution is equivalent to OLS under conditions of compound symmetry and is equivalent to the analysis of simple gain scores in the presence of an autoregressive (order 1) correlational structure. The understanding of these relationships is important with regard to the frequently heard criticisms of the simpler definitions of treatment response in repeated measurement designs.lld:pubmed
pubmed-article:12034014pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12034014pubmed:languageenglld:pubmed
pubmed-article:12034014pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12034014pubmed:citationSubsetIMlld:pubmed
pubmed-article:12034014pubmed:statusMEDLINElld:pubmed
pubmed-article:12034014pubmed:monthMaylld:pubmed
pubmed-article:12034014pubmed:issn0007-1102lld:pubmed
pubmed-article:12034014pubmed:authorpubmed-author:TonidandelSco...lld:pubmed
pubmed-article:12034014pubmed:authorpubmed-author:OverallJohn...lld:pubmed
pubmed-article:12034014pubmed:issnTypePrintlld:pubmed
pubmed-article:12034014pubmed:volume55lld:pubmed
pubmed-article:12034014pubmed:ownerNLMlld:pubmed
pubmed-article:12034014pubmed:authorsCompleteYlld:pubmed
pubmed-article:12034014pubmed:pagination109-24lld:pubmed
pubmed-article:12034014pubmed:dateRevised2009-11-11lld:pubmed
pubmed-article:12034014pubmed:meshHeadingpubmed-meshheading:12034014...lld:pubmed
pubmed-article:12034014pubmed:meshHeadingpubmed-meshheading:12034014...lld:pubmed
pubmed-article:12034014pubmed:meshHeadingpubmed-meshheading:12034014...lld:pubmed
pubmed-article:12034014pubmed:meshHeadingpubmed-meshheading:12034014...lld:pubmed
pubmed-article:12034014pubmed:year2002lld:pubmed
pubmed-article:12034014pubmed:articleTitleMeasuring change in controlled longitudinal studies.lld:pubmed
pubmed-article:12034014pubmed:affiliationDepartment of Psychiatry and Behavioral Sciences, University of Texas, Health Science Center at Houston, 77225, USA.lld:pubmed
pubmed-article:12034014pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:12034014pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed