Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:11970424rdf:typepubmed:Citationlld:pubmed
pubmed-article:11970424lifeskim:mentionsumls-concept:C1705165lld:lifeskim
pubmed-article:11970424lifeskim:mentionsumls-concept:C0520510lld:lifeskim
pubmed-article:11970424lifeskim:mentionsumls-concept:C2700061lld:lifeskim
pubmed-article:11970424lifeskim:mentionsumls-concept:C0449445lld:lifeskim
pubmed-article:11970424pubmed:issue5 Pt Alld:pubmed
pubmed-article:11970424pubmed:dateCreated2002-4-23lld:pubmed
pubmed-article:11970424pubmed:abstractTextThe gas-liquid transition of a "quenched-annealed"(QA) system is studied by grand-canonical Monte Carlo simulation. The "quenched" particles are hard spheres within configurations chosen randomly from those of an equilibrium hard-sphere system at given density. The fluid particles interact with the matrix particles by a hard-core potential and with each other by a hard-core potential and an additional potential of a Lennard-Jones type. Our results are in good qualitative agreement with various theoretical approaches. With increasing matrix density the critical temperature is lowered compared to that of the bulk system and the gap between the gas and liquid densities narrowed. Our simulations confirm, for this QA system, the possibility of two fluid-fluid transitions substituting for the unique gas-liquid transition of the bulk system. They demonstrate the necessity to average over a significant number of matrix realizations in order to obtain a quantitative location of the phase coexistence lines.lld:pubmed
pubmed-article:11970424pubmed:languageenglld:pubmed
pubmed-article:11970424pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11970424pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:11970424pubmed:monthNovlld:pubmed
pubmed-article:11970424pubmed:issn1063-651Xlld:pubmed
pubmed-article:11970424pubmed:authorpubmed-author:AlvarezMMlld:pubmed
pubmed-article:11970424pubmed:authorpubmed-author:LevesqueDDlld:pubmed
pubmed-article:11970424pubmed:authorpubmed-author:WeisJ JJJlld:pubmed
pubmed-article:11970424pubmed:issnTypePrintlld:pubmed
pubmed-article:11970424pubmed:volume60lld:pubmed
pubmed-article:11970424pubmed:ownerNLMlld:pubmed
pubmed-article:11970424pubmed:authorsCompleteYlld:pubmed
pubmed-article:11970424pubmed:pagination5495-504lld:pubmed
pubmed-article:11970424pubmed:dateRevised2003-11-3lld:pubmed
pubmed-article:11970424pubmed:year1999lld:pubmed
pubmed-article:11970424pubmed:articleTitleMonte Carlo approach to the gas-liquid transition in porous materials.lld:pubmed
pubmed-article:11970424pubmed:affiliationLaboratoire de Physique Théorique, Bâtiment 210, Université de Paris-Sud, 91405 Orsay Cedex, France.lld:pubmed
pubmed-article:11970424pubmed:publicationTypeJournal Articlelld:pubmed