Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:11969663rdf:typepubmed:Citationlld:pubmed
pubmed-article:11969663lifeskim:mentionsumls-concept:C1257890lld:lifeskim
pubmed-article:11969663lifeskim:mentionsumls-concept:C0035820lld:lifeskim
pubmed-article:11969663lifeskim:mentionsumls-concept:C0542341lld:lifeskim
pubmed-article:11969663lifeskim:mentionsumls-concept:C2825575lld:lifeskim
pubmed-article:11969663lifeskim:mentionsumls-concept:C0332516lld:lifeskim
pubmed-article:11969663lifeskim:mentionsumls-concept:C1707520lld:lifeskim
pubmed-article:11969663pubmed:issue6lld:pubmed
pubmed-article:11969663pubmed:dateCreated2002-4-23lld:pubmed
pubmed-article:11969663pubmed:abstractTextThe theory of fully developed turbulence is usually considered in an idealized homogeneous and isotropic state. Real turbulent flows exhibit the effects of anisotropic forcing. The analysis of correlation functions and structure functions in isotropic and anisotropic situations is facilitated and made rational when performed in terms of the irreducible representations of the relevant symmetry group which is the group of all rotations SO(3). In this paper we first consider the needed general theory, and explain why we expect different (universal) scaling exponents in the different sectors of the symmetry group. We exemplify the theory context of isotropic turbulence (for third order tensorial structure functions) and in weakly anisotropic turbulence (for the second order structure function). The utility of the resulting expressions for the analysis of experimental data is demonstrated in the context of high Reynolds number measurements of turbulence in the atmosphere.lld:pubmed
pubmed-article:11969663pubmed:languageenglld:pubmed
pubmed-article:11969663pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11969663pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:11969663pubmed:monthJunlld:pubmed
pubmed-article:11969663pubmed:issn1063-651Xlld:pubmed
pubmed-article:11969663pubmed:authorpubmed-author:AradIIlld:pubmed
pubmed-article:11969663pubmed:authorpubmed-author:ProcacciaIIlld:pubmed
pubmed-article:11969663pubmed:authorpubmed-author:L'vovV SVSlld:pubmed
pubmed-article:11969663pubmed:issnTypePrintlld:pubmed
pubmed-article:11969663pubmed:volume59lld:pubmed
pubmed-article:11969663pubmed:ownerNLMlld:pubmed
pubmed-article:11969663pubmed:authorsCompleteYlld:pubmed
pubmed-article:11969663pubmed:pagination6753-65lld:pubmed
pubmed-article:11969663pubmed:dateRevised2003-11-3lld:pubmed
pubmed-article:11969663pubmed:year1999lld:pubmed
pubmed-article:11969663pubmed:articleTitleCorrelation functions in isotropic and anisotropic turbulence: the role of the symmetry group.lld:pubmed
pubmed-article:11969663pubmed:affiliationDepartment of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel.lld:pubmed
pubmed-article:11969663pubmed:publicationTypeJournal Articlelld:pubmed