pubmed-article:11580429 | pubmed:abstractText | Long-wavelength instabilities of steady patterns, spatially periodic in three dimensions, are studied. All potentially stable patterns with the symmetries of the simple-, face-centered- and body-centered-cubic lattices are considered. The results generalize the well-known Eckhaus, zigzag, and skew-varicose instabilities to three-dimensional patterns and are applied to two-species reaction-diffusion equations modeling the Turing instability. | lld:pubmed |