Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:11550920rdf:typepubmed:Citationlld:pubmed
pubmed-article:11550920lifeskim:mentionsumls-concept:C0003062lld:lifeskim
pubmed-article:11550920lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:11550920lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:11550920lifeskim:mentionsumls-concept:C2004454lld:lifeskim
pubmed-article:11550920lifeskim:mentionsumls-concept:C1511726lld:lifeskim
pubmed-article:11550920pubmed:issue3lld:pubmed
pubmed-article:11550920pubmed:dateCreated2001-9-11lld:pubmed
pubmed-article:11550920pubmed:abstractTextCertain probability models sometimes provide poor descriptions when fitted to data by maximum likelihood. We examine one such model for the survival of wild animals, which is fitted to two sets of data. When the model behaves poorly, its expected information matrix, evaluated at the maximum likelihood estimate of parameters, has a 'small' smallest eigenvalue. This is due to the fitted model being similar to a parameter-redundant submodel. In this case, model parameters that are precisely estimated have small coefficients in the eigenvector corresponding to the smallest eigenvalue. Approximate algebraic expressions are provided for the smallest eigenvalue. We discuss the general applicability of these results.lld:pubmed
pubmed-article:11550920pubmed:languageenglld:pubmed
pubmed-article:11550920pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11550920pubmed:citationSubsetIMlld:pubmed
pubmed-article:11550920pubmed:statusMEDLINElld:pubmed
pubmed-article:11550920pubmed:monthSeplld:pubmed
pubmed-article:11550920pubmed:issn0006-341Xlld:pubmed
pubmed-article:11550920pubmed:authorpubmed-author:CatchpoleE...lld:pubmed
pubmed-article:11550920pubmed:authorpubmed-author:MorganB JBJlld:pubmed
pubmed-article:11550920pubmed:authorpubmed-author:KgosiP MPMlld:pubmed
pubmed-article:11550920pubmed:issnTypePrintlld:pubmed
pubmed-article:11550920pubmed:volume57lld:pubmed
pubmed-article:11550920pubmed:ownerNLMlld:pubmed
pubmed-article:11550920pubmed:authorsCompleteYlld:pubmed
pubmed-article:11550920pubmed:pagination720-6lld:pubmed
pubmed-article:11550920pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:11550920pubmed:meshHeadingpubmed-meshheading:11550920...lld:pubmed
pubmed-article:11550920pubmed:meshHeadingpubmed-meshheading:11550920...lld:pubmed
pubmed-article:11550920pubmed:meshHeadingpubmed-meshheading:11550920...lld:pubmed
pubmed-article:11550920pubmed:meshHeadingpubmed-meshheading:11550920...lld:pubmed
pubmed-article:11550920pubmed:meshHeadingpubmed-meshheading:11550920...lld:pubmed
pubmed-article:11550920pubmed:meshHeadingpubmed-meshheading:11550920...lld:pubmed
pubmed-article:11550920pubmed:meshHeadingpubmed-meshheading:11550920...lld:pubmed
pubmed-article:11550920pubmed:meshHeadingpubmed-meshheading:11550920...lld:pubmed
pubmed-article:11550920pubmed:year2001lld:pubmed
pubmed-article:11550920pubmed:articleTitleOn the near-singularity of models for animal recovery data.lld:pubmed
pubmed-article:11550920pubmed:affiliationSchool of Mathematics and Statistics, University College UNSW, Australian Defence Force Academy, Canberra ACT. e-catchpole@adfa.edu.aulld:pubmed
pubmed-article:11550920pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:11550920pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed