Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:11524417rdf:typepubmed:Citationlld:pubmed
pubmed-article:11524417lifeskim:mentionsumls-concept:C0740009lld:lifeskim
pubmed-article:11524417lifeskim:mentionsumls-concept:C0007054lld:lifeskim
pubmed-article:11524417lifeskim:mentionsumls-concept:C0444626lld:lifeskim
pubmed-article:11524417lifeskim:mentionsumls-concept:C1167622lld:lifeskim
pubmed-article:11524417lifeskim:mentionsumls-concept:C0007382lld:lifeskim
pubmed-article:11524417lifeskim:mentionsumls-concept:C0870071lld:lifeskim
pubmed-article:11524417lifeskim:mentionsumls-concept:C1710236lld:lifeskim
pubmed-article:11524417lifeskim:mentionsumls-concept:C0441712lld:lifeskim
pubmed-article:11524417pubmed:issue47lld:pubmed
pubmed-article:11524417pubmed:dateCreated2001-11-19lld:pubmed
pubmed-article:11524417pubmed:databankReferencehttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11524417pubmed:abstractTextThe enzymatic catalysis of many biological processes of life is supported by the presence of cofactors and prosthetic groups originating from the common tetrapyrrole precursor uroporphyrinogen-III. Uroporphyrinogen-III decarboxylase catalyzes its conversion into coproporphyrinogen-III, leading in plants to chlorophyll and heme biosynthesis. Here we report the first crystal structure of a plant (Nicotiana tabacum) uroporphyrinogen-III decarboxylase, together with the molecular modeling of substrate binding in tobacco and human enzymes. Its structural comparison with the homologous human protein reveals a similar catalytic cleft with six invariant polar residues, Arg(32), Arg(36), Asp(82), Ser(214) (Thr in Escherichia coli), Tyr(159), and His(329) (tobacco numbering). The functional relationships obtained from the structural and modeling analyses of both enzymes allowed the proposal for a refined catalytic mechanism. Asp(82) and Tyr(159) seem to be the catalytic functional groups, whereas the other residues may serve in substrate recognition and binding, with Arg(32) steering its insertion. The crystallographic dimer appears to represent the protein dimer under physiological conditions. The dimeric arrangement offers a plausible mechanism at least for the first two (out of four) decarboxylation steps.lld:pubmed
pubmed-article:11524417pubmed:languageenglld:pubmed
pubmed-article:11524417pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11524417pubmed:citationSubsetIMlld:pubmed
pubmed-article:11524417pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11524417pubmed:statusMEDLINElld:pubmed
pubmed-article:11524417pubmed:monthNovlld:pubmed
pubmed-article:11524417pubmed:issn0021-9258lld:pubmed
pubmed-article:11524417pubmed:authorpubmed-author:HuberRRlld:pubmed
pubmed-article:11524417pubmed:authorpubmed-author:GrimmBBlld:pubmed
pubmed-article:11524417pubmed:authorpubmed-author:MeadR WRWlld:pubmed
pubmed-article:11524417pubmed:authorpubmed-author:Messerschmidt...lld:pubmed
pubmed-article:11524417pubmed:authorpubmed-author:MartinsB MBMlld:pubmed
pubmed-article:11524417pubmed:issnTypePrintlld:pubmed
pubmed-article:11524417pubmed:day23lld:pubmed
pubmed-article:11524417pubmed:volume276lld:pubmed
pubmed-article:11524417pubmed:ownerNLMlld:pubmed
pubmed-article:11524417pubmed:authorsCompleteYlld:pubmed
pubmed-article:11524417pubmed:pagination44108-16lld:pubmed
pubmed-article:11524417pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:11524417pubmed:meshHeadingpubmed-meshheading:11524417...lld:pubmed
pubmed-article:11524417pubmed:meshHeadingpubmed-meshheading:11524417...lld:pubmed
pubmed-article:11524417pubmed:meshHeadingpubmed-meshheading:11524417...lld:pubmed
pubmed-article:11524417pubmed:meshHeadingpubmed-meshheading:11524417...lld:pubmed
pubmed-article:11524417pubmed:meshHeadingpubmed-meshheading:11524417...lld:pubmed
pubmed-article:11524417pubmed:meshHeadingpubmed-meshheading:11524417...lld:pubmed
pubmed-article:11524417pubmed:meshHeadingpubmed-meshheading:11524417...lld:pubmed
pubmed-article:11524417pubmed:meshHeadingpubmed-meshheading:11524417...lld:pubmed
pubmed-article:11524417pubmed:meshHeadingpubmed-meshheading:11524417...lld:pubmed
pubmed-article:11524417pubmed:meshHeadingpubmed-meshheading:11524417...lld:pubmed
pubmed-article:11524417pubmed:meshHeadingpubmed-meshheading:11524417...lld:pubmed
pubmed-article:11524417pubmed:year2001lld:pubmed
pubmed-article:11524417pubmed:articleTitleCrystal structure and substrate binding modeling of the uroporphyrinogen-III decarboxylase from Nicotiana tabacum. Implications for the catalytic mechanism.lld:pubmed
pubmed-article:11524417pubmed:affiliationMax-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, 82152 Martinsried bei München, Germany. martins@biochem.mpg.delld:pubmed
pubmed-article:11524417pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:11524417pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:11524417lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:11524417lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:11524417lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:11524417lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:11524417lld:pubmed