Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:11227082rdf:typepubmed:Citationlld:pubmed
pubmed-article:11227082lifeskim:mentionsumls-concept:C0242406lld:lifeskim
pubmed-article:11227082lifeskim:mentionsumls-concept:C0205360lld:lifeskim
pubmed-article:11227082lifeskim:mentionsumls-concept:C0205421lld:lifeskim
pubmed-article:11227082pubmed:issue10lld:pubmed
pubmed-article:11227082pubmed:dateCreated2001-1-11lld:pubmed
pubmed-article:11227082pubmed:abstractTextWe utilize the Lyapunov function method to analyze stability of continuous nonlinear neural networks with delays and obtain some new sufficient conditions ensuring the globally asymptotic stability independent of delays. Three main conditions imposed on the weighting matrices are established. (i). The spectral radius rho(M(-1)(W0 + Wtau)K) < 1. (ii). The row norm M(-1)(W0 + Wtau)K + P(-1) ((W0 + Wtau)KM(-1))T P infinity < 2. (iii). mu2(W0) + Wtau2,F < (m/k). These three conditions are independent to each other. The delayed Hopfield network, Bidirectional associative memory network and cellular neural network are special cases of the network model considered in this paper. So we improve some previous works of other researchers.lld:pubmed
pubmed-article:11227082pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11227082pubmed:languageenglld:pubmed
pubmed-article:11227082pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11227082pubmed:citationSubsetIMlld:pubmed
pubmed-article:11227082pubmed:statusMEDLINElld:pubmed
pubmed-article:11227082pubmed:monthDeclld:pubmed
pubmed-article:11227082pubmed:issn0893-6080lld:pubmed
pubmed-article:11227082pubmed:authorpubmed-author:LuHHlld:pubmed
pubmed-article:11227082pubmed:issnTypePrintlld:pubmed
pubmed-article:11227082pubmed:volume13lld:pubmed
pubmed-article:11227082pubmed:ownerNLMlld:pubmed
pubmed-article:11227082pubmed:authorsCompleteYlld:pubmed
pubmed-article:11227082pubmed:pagination1135-43lld:pubmed
pubmed-article:11227082pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:11227082pubmed:meshHeadingpubmed-meshheading:11227082...lld:pubmed
pubmed-article:11227082pubmed:meshHeadingpubmed-meshheading:11227082...lld:pubmed
pubmed-article:11227082pubmed:meshHeadingpubmed-meshheading:11227082...lld:pubmed
pubmed-article:11227082pubmed:year2000lld:pubmed
pubmed-article:11227082pubmed:articleTitleOn stability of nonlinear continuous-time neural networks with delays.lld:pubmed
pubmed-article:11227082pubmed:affiliationDepartment of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China. htlu@mail1.sjtu.edu.cnlld:pubmed
pubmed-article:11227082pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:11227082pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:11227082lld:pubmed