Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:11157849rdf:typepubmed:Citationlld:pubmed
pubmed-article:11157849lifeskim:mentionsumls-concept:C0026809lld:lifeskim
pubmed-article:11157849lifeskim:mentionsumls-concept:C1515432lld:lifeskim
pubmed-article:11157849lifeskim:mentionsumls-concept:C1332709lld:lifeskim
pubmed-article:11157849lifeskim:mentionsumls-concept:C1413236lld:lifeskim
pubmed-article:11157849lifeskim:mentionsumls-concept:C1327413lld:lifeskim
pubmed-article:11157849lifeskim:mentionsumls-concept:C1707455lld:lifeskim
pubmed-article:11157849pubmed:issue2lld:pubmed
pubmed-article:11157849pubmed:dateCreated2001-2-22lld:pubmed
pubmed-article:11157849pubmed:abstractTextCD7 and CD28 are Ig superfamily molecules expressed on thymocytes and mature T cells that share common signaling 0mechanisms and are co-mitogens for T cell activation. CD7-deficient mice are resistant to lipopolysaccharide (LPS)-induced shock syndrome, and have diminished in vivo LPS-triggered IFN-gamma and tumor necrosis factor (TNF)-alpha production. CD28-deficient mice have decreased serum Ig levels, defective IgG isotype switching, decreased T cell IL-2 production and are resistant to Staphylococcus aureus enterotoxin-induced shock. To determine synergistic roles CD7 and CD28 might play in thymocyte development and function, we have generated and characterized CD7/CD28 double-deficient mice. CD7/CD28-deficient mice were healthy, reproduced normally, had normal numbers of thymocyte subsets and had normal thymus histology. Anti-CD3 mAb induced similar levels of apoptosis in CD7-deficient, CD28-deficient and CD7/CD28 double-deficient thymocytes as in control C57BL/6 mice (P = NS). Similarly, thymocyte viability, apoptosis and necrosis following ionomycin or dexamethasone treatment were the same in control, CD7-deficient, CD28-deficient and CD7/CD28-deficient mice. CD28-deficient and CD7/CD28-deficient thymocytes had decreased [3H]thymidine incorporation responses to concanavalin A (Con A) stimulation compared to control mice (P < or = 0.01 and P < or = 0.05 respectively). CD7/CD28 double-deficient mice had significantly reduced numbers of B7-1/B7-2 double-positive cells compared to freshly isolated wild-type, CD7-deficient and CD28-deficient thymocytes. Con A-stimulated CD4/CD8 double-negative (DN) thymocytes from CD7/CD28 double-deficient mice expressed significantly lower levels of CD25 when compared to CD4/CD8 DN thymocytes from wild-type, CD7-deficient and CD28-deficient mice (P < 0.05). Anti-CD3-triggered CD7/CD28-deficient thymocytes also had decreased IFN-gamma and TNF-alpha production compared to C57BL/6 control, CD7-deficient and CD28-deficient mice (P < or = 0.05). Thus, CD7 and CD28 deficiencies combined to produce abnormalities in the absolute number of B7-1/B7-2-expressing cells in the thymus, thymocyte IL-2 receptor expression and CD3-triggered cytokine production.lld:pubmed
pubmed-article:11157849pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:languageenglld:pubmed
pubmed-article:11157849pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:citationSubsetIMlld:pubmed
pubmed-article:11157849pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11157849pubmed:statusMEDLINElld:pubmed
pubmed-article:11157849pubmed:monthFeblld:pubmed
pubmed-article:11157849pubmed:issn0953-8178lld:pubmed
pubmed-article:11157849pubmed:authorpubmed-author:HaynesB FBFlld:pubmed
pubmed-article:11157849pubmed:authorpubmed-author:LeeD MDMlld:pubmed
pubmed-article:11157849pubmed:authorpubmed-author:ThompsonC BCBlld:pubmed
pubmed-article:11157849pubmed:authorpubmed-author:PatelD DDDlld:pubmed
pubmed-article:11157849pubmed:authorpubmed-author:SempowskiG...lld:pubmed
pubmed-article:11157849pubmed:authorpubmed-author:ScearceR MRMlld:pubmed
pubmed-article:11157849pubmed:authorpubmed-author:HeinlyC SCSlld:pubmed
pubmed-article:11157849pubmed:authorpubmed-author:McDermottP...lld:pubmed
pubmed-article:11157849pubmed:issnTypePrintlld:pubmed
pubmed-article:11157849pubmed:volume13lld:pubmed
pubmed-article:11157849pubmed:ownerNLMlld:pubmed
pubmed-article:11157849pubmed:authorsCompleteYlld:pubmed
pubmed-article:11157849pubmed:pagination157-66lld:pubmed
pubmed-article:11157849pubmed:dateRevised2007-11-14lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:meshHeadingpubmed-meshheading:11157849...lld:pubmed
pubmed-article:11157849pubmed:year2001lld:pubmed
pubmed-article:11157849pubmed:articleTitleComparison of thymocyte development and cytokine production in CD7-deficient, CD28-deficient and CD7/CD28 double-deficient mice.lld:pubmed
pubmed-article:11157849pubmed:affiliationDivision of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.lld:pubmed
pubmed-article:11157849pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:11157849pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:11157849pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
entrez-gene:12487entrezgene:pubmedpubmed-article:11157849lld:entrezgene
entrez-gene:12516entrezgene:pubmedpubmed-article:11157849lld:entrezgene