Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:11139040rdf:typepubmed:Citationlld:pubmed
pubmed-article:11139040lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:11139040lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:11139040lifeskim:mentionsumls-concept:C0027882lld:lifeskim
pubmed-article:11139040lifeskim:mentionsumls-concept:C2825570lld:lifeskim
pubmed-article:11139040lifeskim:mentionsumls-concept:C0549193lld:lifeskim
pubmed-article:11139040lifeskim:mentionsumls-concept:C0205171lld:lifeskim
pubmed-article:11139040pubmed:issue3lld:pubmed
pubmed-article:11139040pubmed:dateCreated2001-1-2lld:pubmed
pubmed-article:11139040pubmed:abstractTextWith the advancement in computer technology, it has become possible to fit complex models to neuronal data. In this work, we test how two methods can estimate parameters of simple neuron models (passive soma) to more complex ones (neuron with one dendritic cylinder and two active conductances). The first method uses classical voltage traces resulting from current pulses injection (time domain), while the second uses measures of the neuron's response to sinusoidal stimuli (frequency domain). Both methods estimate correctly the parameters in all cases studied. However, the time-domain method is slower and more prone to estimation errors in the cable parameters than the frequency-domain method. Because with noisy data the goodness of fit does not distinguish between different solutions, we suggest that running the estimation procedure a large number of times might help find a good solution and can provide information about the interactions between parameters. Also, because the formulation used for the model's response in the frequency domain is analytical, one can derive a local sensitivity analysis for each parameter. This analysis indicates how well a parameter is likely to be estimated and helps choose an optimal stimulation protocol. Finally, the tests suggest a strategy for fitting single-cell models using the two methods examined.lld:pubmed
pubmed-article:11139040pubmed:languageenglld:pubmed
pubmed-article:11139040pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11139040pubmed:citationSubsetIMlld:pubmed
pubmed-article:11139040pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11139040pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11139040pubmed:statusMEDLINElld:pubmed
pubmed-article:11139040pubmed:issn0929-5313lld:pubmed
pubmed-article:11139040pubmed:authorpubmed-author:TabakJJlld:pubmed
pubmed-article:11139040pubmed:authorpubmed-author:MooreL ELElld:pubmed
pubmed-article:11139040pubmed:authorpubmed-author:MurpheyC RCRlld:pubmed
pubmed-article:11139040pubmed:issnTypePrintlld:pubmed
pubmed-article:11139040pubmed:volume9lld:pubmed
pubmed-article:11139040pubmed:ownerNLMlld:pubmed
pubmed-article:11139040pubmed:authorsCompleteYlld:pubmed
pubmed-article:11139040pubmed:pagination215-36lld:pubmed
pubmed-article:11139040pubmed:dateRevised2004-11-17lld:pubmed
pubmed-article:11139040pubmed:meshHeadingpubmed-meshheading:11139040...lld:pubmed
pubmed-article:11139040pubmed:meshHeadingpubmed-meshheading:11139040...lld:pubmed
pubmed-article:11139040pubmed:meshHeadingpubmed-meshheading:11139040...lld:pubmed
pubmed-article:11139040pubmed:meshHeadingpubmed-meshheading:11139040...lld:pubmed
pubmed-article:11139040pubmed:meshHeadingpubmed-meshheading:11139040...lld:pubmed
pubmed-article:11139040pubmed:meshHeadingpubmed-meshheading:11139040...lld:pubmed
pubmed-article:11139040pubmed:meshHeadingpubmed-meshheading:11139040...lld:pubmed
pubmed-article:11139040pubmed:meshHeadingpubmed-meshheading:11139040...lld:pubmed
pubmed-article:11139040pubmed:meshHeadingpubmed-meshheading:11139040...lld:pubmed
pubmed-article:11139040pubmed:meshHeadingpubmed-meshheading:11139040...lld:pubmed
pubmed-article:11139040pubmed:meshHeadingpubmed-meshheading:11139040...lld:pubmed
pubmed-article:11139040pubmed:articleTitleParameter estimation methods for single neuron models.lld:pubmed
pubmed-article:11139040pubmed:affiliationEquipe de Neurobiologie, CNRS URA 256, Université de Rennes 1. joel@spine.ninds.nih.govlld:pubmed
pubmed-article:11139040pubmed:publicationTypeJournal Articlelld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:11139040lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:11139040lld:pubmed