Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10998051rdf:typepubmed:Citationlld:pubmed
pubmed-article:10998051lifeskim:mentionsumls-concept:C0007452lld:lifeskim
pubmed-article:10998051lifeskim:mentionsumls-concept:C0023317lld:lifeskim
pubmed-article:10998051lifeskim:mentionsumls-concept:C0678594lld:lifeskim
pubmed-article:10998051lifeskim:mentionsumls-concept:C1705241lld:lifeskim
pubmed-article:10998051lifeskim:mentionsumls-concept:C1705242lld:lifeskim
pubmed-article:10998051pubmed:issue19lld:pubmed
pubmed-article:10998051pubmed:dateCreated2000-11-13lld:pubmed
pubmed-article:10998051pubmed:abstractTextLens alphaA- and alphaB-crystallin have been reported to act differently in their protection against nonthermal destabilization of proteins. The nature of this difference, however, is not completely understood. Therefore we used a combination of thermally and solvent-induced structural changes to investigate the difference in the secondary, tertiary and quaternary structures of alphaA- and alphaB-crystallin. We demonstrate the relationship between the changes in the tertiary and quaternary structures for both polypeptides. Far-ultraviolet circular dichroism revealed that the secondary structure of alphaB-crystallin is more stable than that of alphaA-crystallin, and the temperature-induced secondary structure changes of both polypeptides are partially reversible. Tryptophan fluorescence revealed two distinct transitions for both alphaA- and alphaB-crystallin. Compared to alphaB-crystallin, both transitions of alphaA-crystallin occurred at higher temperature. The changes in the hydrophobicity are accompanied by changes in the quaternary structure and are biphasic, as shown by bis-1-anilino-8-naphthalenesulfonate fluorescence and sedimentation velocity. These phenomena explain the difference in the chaperone capacity of alphaA- and alphaB-crystallin carried out at different temperatures. The quaternary structure of alpha-crystallin is more stable than that of alphaA- and alphaB-crystallin. The latter has a strong tendency to dissociate under thermal or solvent destabilization. This phenomenon is related to the difference in subunit organization of alphaA- and alphaB-crystallin where both hydrophobic and ionic interactions are involved. We find that an important subunit rearrangement of alphaA-crystallin takes place once the molecule is destabilized. This subunit rearrangement is a requisite phenomenon for maintaining alpha-crystallin in its globular form and as a stable complex. On the base of our results, we suggest a four-state model describing the folding and dissociation of alphaA- and alphaB-crystallin better than a three-state model [Sun et al. (1999) J. Biol. Chem. 274, 34067-34071].lld:pubmed
pubmed-article:10998051pubmed:languageenglld:pubmed
pubmed-article:10998051pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10998051pubmed:citationSubsetIMlld:pubmed
pubmed-article:10998051pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10998051pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10998051pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10998051pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10998051pubmed:statusMEDLINElld:pubmed
pubmed-article:10998051pubmed:monthOctlld:pubmed
pubmed-article:10998051pubmed:issn0014-2956lld:pubmed
pubmed-article:10998051pubmed:authorpubmed-author:ClauwaertJJlld:pubmed
pubmed-article:10998051pubmed:authorpubmed-author:AertsTTlld:pubmed
pubmed-article:10998051pubmed:authorpubmed-author:BackmannJJlld:pubmed
pubmed-article:10998051pubmed:authorpubmed-author:VanhoudtJJlld:pubmed
pubmed-article:10998051pubmed:authorpubmed-author:AbgarSSlld:pubmed
pubmed-article:10998051pubmed:issnTypePrintlld:pubmed
pubmed-article:10998051pubmed:volume267lld:pubmed
pubmed-article:10998051pubmed:ownerNLMlld:pubmed
pubmed-article:10998051pubmed:authorsCompleteYlld:pubmed
pubmed-article:10998051pubmed:pagination5916-25lld:pubmed
pubmed-article:10998051pubmed:dateRevised2008-11-21lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:meshHeadingpubmed-meshheading:10998051...lld:pubmed
pubmed-article:10998051pubmed:year2000lld:pubmed
pubmed-article:10998051pubmed:articleTitleThe structural differences between bovine lens alphaA- and alphaB-crystallin.lld:pubmed
pubmed-article:10998051pubmed:affiliationBiophysics Research Group, Department of Biochemistry, University of Antwerp, Belgium.lld:pubmed
pubmed-article:10998051pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:10998051pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:10998051pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10998051lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10998051lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10998051lld:pubmed