pubmed-article:10817338 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:10817338 | lifeskim:mentions | umls-concept:C0317971 | lld:lifeskim |
pubmed-article:10817338 | lifeskim:mentions | umls-concept:C0033269 | lld:lifeskim |
pubmed-article:10817338 | lifeskim:mentions | umls-concept:C0033268 | lld:lifeskim |
pubmed-article:10817338 | lifeskim:mentions | umls-concept:C0439836 | lld:lifeskim |
pubmed-article:10817338 | lifeskim:mentions | umls-concept:C2698650 | lld:lifeskim |
pubmed-article:10817338 | pubmed:issue | 1 | lld:pubmed |
pubmed-article:10817338 | pubmed:dateCreated | 2000-7-6 | lld:pubmed |
pubmed-article:10817338 | pubmed:abstractText | For the development of a continuous process for the production of solid D-malate from a Ca-maleate suspension by permeabilized Pseudomonas pseudoalcaligenes, it is important to understand the effect of appropriate process parameters on the stability and activity of the biocatalyst. Previously, we quantified the effect of product (D-malate2 -) concentration on both the first-order biocatalyst inactivation rate and on the biocatalytic conversion rate. The effects of the remaining process parameters (ionic strength, and substrate and Ca2 + concentration) on biocatalyst activity are reported here. At (common) ionic strengths below 2 M, biocatalyst activity was unaffected. At high substrate concentrations, inhibition occurred. Ca2+ concentration did not affect biocatalyst activity. The kinetic parameters (both for conversion and inactivation) were determined as a function of temperature by fitting the complete kinetic model, featuring substrate inhibition, competitive product inhibition and first-order irreversible biocatalyst inactivation, at different temperatures simultaneously through three extended data sets of substrate concentration versus time. Temperature affected both the conversion and inactivation parameters. The final model was used to calculate the substrate and biocatalyst costs per mmol of product in a continuous system with biocatalyst replenishment and biocatalyst recycling. Despite the effect of temperature on each kinetic parameter separately, the overall effect of temperature on the costs was found to be negligible (between 293 and 308 K). Within pertinent ranges, the sum of the substrate and biocatalyst costs per mmol of product was calculated to decrease with the influent substrate concentration and the residence time. The sum of the costs showed a minimum as a function of the influent biocatalyst concentration. | lld:pubmed |
pubmed-article:10817338 | pubmed:language | eng | lld:pubmed |
pubmed-article:10817338 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10817338 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:10817338 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10817338 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10817338 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10817338 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10817338 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10817338 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:10817338 | pubmed:month | Apr | lld:pubmed |
pubmed-article:10817338 | pubmed:issn | 0168-1656 | lld:pubmed |
pubmed-article:10817338 | pubmed:author | pubmed-author:TramperJJ | lld:pubmed |
pubmed-article:10817338 | pubmed:author | pubmed-author:BeeftinkH HHH | lld:pubmed |
pubmed-article:10817338 | pubmed:author | pubmed-author:WijffelsR HRH | lld:pubmed |
pubmed-article:10817338 | pubmed:author | pubmed-author:MichielsenM... | lld:pubmed |
pubmed-article:10817338 | pubmed:author | pubmed-author:FrielinkCC | lld:pubmed |
pubmed-article:10817338 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:10817338 | pubmed:day | 14 | lld:pubmed |
pubmed-article:10817338 | pubmed:volume | 79 | lld:pubmed |
pubmed-article:10817338 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:10817338 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:10817338 | pubmed:pagination | 13-26 | lld:pubmed |
pubmed-article:10817338 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:meshHeading | pubmed-meshheading:10817338... | lld:pubmed |
pubmed-article:10817338 | pubmed:year | 2000 | lld:pubmed |
pubmed-article:10817338 | pubmed:articleTitle | D-malate production by permeabilized Pseudomonas pseudoalcaligenes; optimization of conversion and biocatalyst productivity. | lld:pubmed |
pubmed-article:10817338 | pubmed:affiliation | Department of Food Technology and Nutritional Sciences, Wageningen Agricultural University, The Netherlands. | lld:pubmed |
pubmed-article:10817338 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:10817338 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |