Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10799518rdf:typepubmed:Citationlld:pubmed
pubmed-article:10799518lifeskim:mentionsumls-concept:C0085080lld:lifeskim
pubmed-article:10799518lifeskim:mentionsumls-concept:C0033684lld:lifeskim
pubmed-article:10799518lifeskim:mentionsumls-concept:C0038323lld:lifeskim
pubmed-article:10799518lifeskim:mentionsumls-concept:C0531370lld:lifeskim
pubmed-article:10799518lifeskim:mentionsumls-concept:C1704259lld:lifeskim
pubmed-article:10799518lifeskim:mentionsumls-concept:C1158423lld:lifeskim
pubmed-article:10799518lifeskim:mentionsumls-concept:C1705987lld:lifeskim
pubmed-article:10799518lifeskim:mentionsumls-concept:C0220905lld:lifeskim
pubmed-article:10799518lifeskim:mentionsumls-concept:C0851285lld:lifeskim
pubmed-article:10799518pubmed:issue19lld:pubmed
pubmed-article:10799518pubmed:dateCreated2000-6-8lld:pubmed
pubmed-article:10799518pubmed:abstractTextSterol regulation-defective (SRD) 4 cells expressing a mutant sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP D443N) and Chinese hamster ovary (CHO) cells stably expressing SCAP (CHO-SCAP) and SCAP D443N (CHO-SCAP-D443N) have increased cholesterol and fatty acid synthesis because of constitutive processing of SREBPs. We assessed whether constitutive activation of SREBPs also influenced the CDP-choline pathway for phosphatidylcholine (PtdCho) biosynthesis. Relative to control CHO 7 cells, SRD 4 cells displayed increased PtdCho synthesis and degradation as indicated by a 4-6-fold increase in [(3)H]choline incorporation into PtdCho and 10-15-fold increase in intracellular [(3)H]glycerophosphocholine. [(3)H]Phosphocholine levels in SRD 4 cells were reduced by over 10-fold, suggesting enhanced activity of CTP:phosphocholine cytidylyltransferase alpha (CCTalpha). CHO-SCAP and CHO-SCAP D443N cells displayed modest increases in [(3)H]choline incorporation into PtdCho (2-fold) and only a 2-fold reduction in [(3)H]phosphocholine. Elevated PtdCho metabolism in SRD 4, compared with SCAP-overexpressing cells, was correlated with fatty acid synthesis. Inhibition of fatty acid synthesis by cerulenin resulted in almost complete normalization of PtdCho synthesis and choline metabolite profiles in SRD 4 cells, indicating that fatty acids or a fatty acid-derived metabolite was responsible for up-regulation of PtdCho synthesis. In contrast to apparent activation in vivo, CCTalpha protein, mRNA, and in vitro activity were reduced in SRD 4 cells and unchanged in SCAP transfected cells. Unlike control and SCAP transfected cells, CCTalpha in SRD 4 cells was localized by immunofluorescence to the nuclear envelope, suggesting that residual enzyme activity in these cells was in an active membrane-associated form. Translocation of CCTalpha to the nuclear envelope was reproduced by treatment of CHO 7 cells with exogenous oleate. We conclude that the SREBP/SCAP pathway regulates PtdCho synthesis via post-transcriptional activation of nuclear CCTalpha by fatty acids or a fatty acid-derived signal.lld:pubmed
pubmed-article:10799518pubmed:languageenglld:pubmed
pubmed-article:10799518pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:citationSubsetIMlld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10799518pubmed:statusMEDLINElld:pubmed
pubmed-article:10799518pubmed:monthMaylld:pubmed
pubmed-article:10799518pubmed:issn0021-9258lld:pubmed
pubmed-article:10799518pubmed:authorpubmed-author:RidgwayN DNDlld:pubmed
pubmed-article:10799518pubmed:authorpubmed-author:LagaceT ATAlld:pubmed
pubmed-article:10799518pubmed:authorpubmed-author:StoreyM KMKlld:pubmed
pubmed-article:10799518pubmed:issnTypePrintlld:pubmed
pubmed-article:10799518pubmed:day12lld:pubmed
pubmed-article:10799518pubmed:volume275lld:pubmed
pubmed-article:10799518pubmed:ownerNLMlld:pubmed
pubmed-article:10799518pubmed:authorsCompleteYlld:pubmed
pubmed-article:10799518pubmed:pagination14367-74lld:pubmed
pubmed-article:10799518pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:meshHeadingpubmed-meshheading:10799518...lld:pubmed
pubmed-article:10799518pubmed:year2000lld:pubmed
pubmed-article:10799518pubmed:articleTitleRegulation of phosphatidylcholine metabolism in Chinese hamster ovary cells by the sterol regulatory element-binding protein (SREBP)/SREBP cleavage-activating protein pathway.lld:pubmed
pubmed-article:10799518pubmed:affiliationAtlantic Research Center and the Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.lld:pubmed
pubmed-article:10799518pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:10799518pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10799518lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10799518lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10799518lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10799518lld:pubmed