Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10671308rdf:typepubmed:Citationlld:pubmed
pubmed-article:10671308lifeskim:mentionsumls-concept:C0025663lld:lifeskim
pubmed-article:10671308lifeskim:mentionsumls-concept:C0206117lld:lifeskim
pubmed-article:10671308lifeskim:mentionsumls-concept:C0013852lld:lifeskim
pubmed-article:10671308lifeskim:mentionsumls-concept:C0678594lld:lifeskim
pubmed-article:10671308pubmed:issue2lld:pubmed
pubmed-article:10671308pubmed:dateCreated2000-3-29lld:pubmed
pubmed-article:10671308pubmed:abstractTextGap junctions are clusters of closely packed intercellular membrane channels embedded in the plasma membranes of two adjoining cells. The central pore of the membrane channels serves as a conduit between cell cytoplasms for molecules less than 1000 Da in size. Advances in the purification of gap junctions and electron cryocrystallography and computer reconstruction techniques have produced new insights into the intercellular channel structure. Methods are described here for the purification of gap junction membranes, biochemical treatments to produce hemichannel layers ("split junctions"), assessment of the purity of gap junction preparations, electron cryomicroscopy, image processing and reconstruction, three-dimensional visualization, and interpretation. The critical step in electron crystallographic structure determination remains the isolation of crystalline material in sufficient and pure quantities for recording of electron microscope images. Along with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting, the quality of gap junction purification is assessed using electron microscopy of negatively stained preparations. Electron microscopy is also used to assess the crystallinity of the purified gap junctions and split junctions. Electron cryocrystallography is a powerful technique for high-resolution structural characterization. Image processing is used to combine and enhance two-dimensional images. Electron crystallographic analysis is used to generate a three-dimensional structure from a set of electron micrographs. This three-dimensional information is extracted from a set of images recorded after tilting the specimen in the electron microscope stage and recombined using Fourier analysis techniques analogous to those used in X-ray crystallography. Computer modeling of the three-dimensional gap junction structures is a useful tool for analyzing hemichannel docking.lld:pubmed
pubmed-article:10671308pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10671308pubmed:languageenglld:pubmed
pubmed-article:10671308pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10671308pubmed:citationSubsetIMlld:pubmed
pubmed-article:10671308pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10671308pubmed:statusMEDLINElld:pubmed
pubmed-article:10671308pubmed:monthFeblld:pubmed
pubmed-article:10671308pubmed:issn1046-2023lld:pubmed
pubmed-article:10671308pubmed:authorpubmed-author:PerkinsG AGAlld:pubmed
pubmed-article:10671308pubmed:authorpubmed-author:SosinskyG EGElld:pubmed
pubmed-article:10671308pubmed:copyrightInfoCopyright 2000 Academic Press.lld:pubmed
pubmed-article:10671308pubmed:issnTypePrintlld:pubmed
pubmed-article:10671308pubmed:volume20lld:pubmed
pubmed-article:10671308pubmed:ownerNLMlld:pubmed
pubmed-article:10671308pubmed:authorsCompleteYlld:pubmed
pubmed-article:10671308pubmed:pagination140-55lld:pubmed
pubmed-article:10671308pubmed:dateRevised2007-11-14lld:pubmed
pubmed-article:10671308pubmed:meshHeadingpubmed-meshheading:10671308...lld:pubmed
pubmed-article:10671308pubmed:meshHeadingpubmed-meshheading:10671308...lld:pubmed
pubmed-article:10671308pubmed:meshHeadingpubmed-meshheading:10671308...lld:pubmed
pubmed-article:10671308pubmed:meshHeadingpubmed-meshheading:10671308...lld:pubmed
pubmed-article:10671308pubmed:meshHeadingpubmed-meshheading:10671308...lld:pubmed
pubmed-article:10671308pubmed:meshHeadingpubmed-meshheading:10671308...lld:pubmed
pubmed-article:10671308pubmed:meshHeadingpubmed-meshheading:10671308...lld:pubmed
pubmed-article:10671308pubmed:meshHeadingpubmed-meshheading:10671308...lld:pubmed
pubmed-article:10671308pubmed:meshHeadingpubmed-meshheading:10671308...lld:pubmed
pubmed-article:10671308pubmed:meshHeadingpubmed-meshheading:10671308...lld:pubmed
pubmed-article:10671308pubmed:year2000lld:pubmed
pubmed-article:10671308pubmed:articleTitleElectron crystallographic methods for investigating gap junction structure.lld:pubmed
pubmed-article:10671308pubmed:affiliationDepartment of Neurosciences, University of California, San Diego, California 92093-0505, USA. gsosingky@ucsd.edulld:pubmed
pubmed-article:10671308pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:10671308pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
pubmed-article:10671308pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed