Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10650980rdf:typepubmed:Citationlld:pubmed
pubmed-article:10650980lifeskim:mentionsumls-concept:C0007634lld:lifeskim
pubmed-article:10650980lifeskim:mentionsumls-concept:C0242692lld:lifeskim
pubmed-article:10650980lifeskim:mentionsumls-concept:C0016030lld:lifeskim
pubmed-article:10650980lifeskim:mentionsumls-concept:C0166417lld:lifeskim
pubmed-article:10650980lifeskim:mentionsumls-concept:C0040648lld:lifeskim
pubmed-article:10650980lifeskim:mentionsumls-concept:C0542341lld:lifeskim
pubmed-article:10650980lifeskim:mentionsumls-concept:C1879547lld:lifeskim
pubmed-article:10650980lifeskim:mentionsumls-concept:C0205117lld:lifeskim
pubmed-article:10650980lifeskim:mentionsumls-concept:C0591833lld:lifeskim
pubmed-article:10650980pubmed:issue3lld:pubmed
pubmed-article:10650980pubmed:dateCreated2000-2-28lld:pubmed
pubmed-article:10650980pubmed:abstractTextNuclear peroxisome proliferator-activated receptor gamma (PPARgamma) is the target of antidiabetogenic thiazolidinediones (TZD). However, recent studies failed to show that TZD has an effect in vitro on insulin-regulated glucose uptake in skeletal muscles, the major site of glucose disposal. The potential effects of TZD on cells adjacent to skeletal muscles are not well characterized but may be involved in TZD's actions. Hence, we studied these cells from mice treated with the carrier and with the TZD ciglitazone (9 nmol/g body weight). The cells were typified by lipid enrichment (floating adipocytes and macrophages), by the ectopic expression of cellular fibronectin (fibroblasts), fibronectin and PPARgamma (preadipocytes), PPARgamma and CD11b/Mac-1 (active macrophages) as revealed by flow cytometry and immunoblotting. The glucose transporter 4 proteins (GLUT4) and the uptake of glucose and long-chain fatty acids (LCFA) were determined flow cytometrically using fluorescent derivatives of glucose (NBDG) and LCFA (C16-Bodipy). The expression of tumor necrosis factor alpha (TNFalpha) in CD11b/Mac-1-positive and CD11b/Mac-1-negative cells separated by magnetic immunobeads was analyzed. The results showed that TZD treatment upregulated GLUT4 expression, and increased insulin-regulated NBDG uptake and C16-Bodipy binding and influx, at the same time as increasing the quantity of PPARgamma-expressing fibroblasts; this indicates the development of the preadipocyte phenotype. In contrast, TZD lowered the number of adipocytes (0.6-fold compared to the carrier-treated control) perhaps through an action of TNFalpha from CD11b- and PPARgamma-expressing macrophages. The data suggest that the regulatory effects of TZD on energy homeostasis involve two major targets: the PPARgamma-positive fibroblasts whose adipogenic program is promoted, and CD11b-PPARgamma-expressing macrophages which become cytotoxic and fibrogenic because of the effects of TNFalpha on neighboring adipocytes and fibroblasts, respectively.lld:pubmed
pubmed-article:10650980pubmed:languageenglld:pubmed
pubmed-article:10650980pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:citationSubsetIMlld:pubmed
pubmed-article:10650980pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10650980pubmed:statusMEDLINElld:pubmed
pubmed-article:10650980pubmed:monthJanlld:pubmed
pubmed-article:10650980pubmed:issn0031-6768lld:pubmed
pubmed-article:10650980pubmed:authorpubmed-author:SchmidtPPlld:pubmed
pubmed-article:10650980pubmed:authorpubmed-author:KrügerBBlld:pubmed
pubmed-article:10650980pubmed:authorpubmed-author:ShahiS KSKlld:pubmed
pubmed-article:10650980pubmed:authorpubmed-author:RenneUUlld:pubmed
pubmed-article:10650980pubmed:authorpubmed-author:LöhrkeBBlld:pubmed
pubmed-article:10650980pubmed:authorpubmed-author:DietlGGlld:pubmed
pubmed-article:10650980pubmed:issnTypePrintlld:pubmed
pubmed-article:10650980pubmed:volume439lld:pubmed
pubmed-article:10650980pubmed:ownerNLMlld:pubmed
pubmed-article:10650980pubmed:authorsCompleteYlld:pubmed
pubmed-article:10650980pubmed:pagination288-96lld:pubmed
pubmed-article:10650980pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:meshHeadingpubmed-meshheading:10650980...lld:pubmed
pubmed-article:10650980pubmed:year2000lld:pubmed
pubmed-article:10650980pubmed:articleTitleThiazolidinedione-induced activation of the transcription factor peroxisome proliferator-activated receptor gamma in cells adjacent to the murine skeletal muscle: implications for fibroblast functions.lld:pubmed
pubmed-article:10650980pubmed:affiliationResearch Institute of Animal Biology, Dummerstorf-Rostock, Germany.lld:pubmed
pubmed-article:10650980pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:10650980pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed