pubmed-article:10642380 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:10642380 | lifeskim:mentions | umls-concept:C0220806 | lld:lifeskim |
pubmed-article:10642380 | lifeskim:mentions | umls-concept:C0034721 | lld:lifeskim |
pubmed-article:10642380 | lifeskim:mentions | umls-concept:C0034693 | lld:lifeskim |
pubmed-article:10642380 | lifeskim:mentions | umls-concept:C0035231 | lld:lifeskim |
pubmed-article:10642380 | lifeskim:mentions | umls-concept:C0232338 | lld:lifeskim |
pubmed-article:10642380 | lifeskim:mentions | umls-concept:C0220854 | lld:lifeskim |
pubmed-article:10642380 | lifeskim:mentions | umls-concept:C0205463 | lld:lifeskim |
pubmed-article:10642380 | pubmed:issue | 1 | lld:pubmed |
pubmed-article:10642380 | pubmed:dateCreated | 2000-3-28 | lld:pubmed |
pubmed-article:10642380 | pubmed:abstractText | Whether the diaphragm retains a vasodilator reserve at maximal exercise is controversial. To address this issue, we measured respiratory and hindlimb muscle blood flows and vascular conductances using radiolabeled microspheres in rats running at their maximal attainable treadmill speed (96 +/- 5 m/min; range 71-116 m/min) and at rest while breathing either room air or 10% O(2)-8% CO(2) (balance N(2)). All hindlimb and respiratory muscle blood flows measured increased during exercise (P < 0.001), whereas increases in blood flow while breathing 10% O(2)-8% CO(2) were restricted to the diaphragm only. During exercise, muscle blood flow increased up to 18-fold above rest values, with the greatest mass specific flows (in ml. min(-1). 100 g(-1)) found in the vastus intermedius (680 +/- 44), red vastus lateralis (536 +/- 18), red gastrocnemius (565 +/- 47), and red tibialis anterior (602 +/- 44). During exercise, blood flow was higher (P < 0.05) in the costal diaphragm (395 +/- 31 ml. min(-1). 100 g(-1)) than in the crural diaphragm (286 +/- 17 ml. min(-1). 100 g(-1)). During hypoxia+hypercapnia, blood flows in both the costal and crural diaphragms (550 +/- 70 and 423 +/- 53 ml. min(-1). 100 g(-1), respectively) were elevated (P < 0.05) above those found during maximal exercise. These data demonstrate that there is a substantial functional vasodilator reserve in the rat diaphragm at maximal exercise and that hypoxia + hypercapnia-induced hyperpnea is necessary to elevate diaphragm blood flow to a level commensurate with its high oxidative capacity. | lld:pubmed |
pubmed-article:10642380 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10642380 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10642380 | pubmed:language | eng | lld:pubmed |
pubmed-article:10642380 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10642380 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:10642380 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10642380 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10642380 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10642380 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:10642380 | pubmed:month | Jan | lld:pubmed |
pubmed-article:10642380 | pubmed:issn | 8750-7587 | lld:pubmed |
pubmed-article:10642380 | pubmed:author | pubmed-author:SextonW LWL | lld:pubmed |
pubmed-article:10642380 | pubmed:author | pubmed-author:MuschT ITI | lld:pubmed |
pubmed-article:10642380 | pubmed:author | pubmed-author:PooleD CDC | lld:pubmed |
pubmed-article:10642380 | pubmed:author | pubmed-author:FergusonC SCS | lld:pubmed |
pubmed-article:10642380 | pubmed:author | pubmed-author:BehnkeB JBJ | lld:pubmed |
pubmed-article:10642380 | pubmed:author | pubmed-author:HagemanK SKS | lld:pubmed |
pubmed-article:10642380 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:10642380 | pubmed:volume | 88 | lld:pubmed |
pubmed-article:10642380 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:10642380 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:10642380 | pubmed:pagination | 186-94 | lld:pubmed |
pubmed-article:10642380 | pubmed:dateRevised | 2007-11-14 | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:meshHeading | pubmed-meshheading:10642380... | lld:pubmed |
pubmed-article:10642380 | pubmed:year | 2000 | lld:pubmed |
pubmed-article:10642380 | pubmed:articleTitle | Respiratory muscle blood flows during physiological and chemical hyperpnea in the rat. | lld:pubmed |
pubmed-article:10642380 | pubmed:affiliation | Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5602, USA. poole@vet.ksu.edu | lld:pubmed |
pubmed-article:10642380 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:10642380 | pubmed:publicationType | Research Support, U.S. Gov't, P.H.S. | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10642380 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10642380 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10642380 | lld:pubmed |