Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10576408rdf:typepubmed:Citationlld:pubmed
pubmed-article:10576408lifeskim:mentionsumls-concept:C0242618lld:lifeskim
pubmed-article:10576408lifeskim:mentionsumls-concept:C0039593lld:lifeskim
pubmed-article:10576408lifeskim:mentionsumls-concept:C0456603lld:lifeskim
pubmed-article:10576408lifeskim:mentionsumls-concept:C1704970lld:lifeskim
pubmed-article:10576408lifeskim:mentionsumls-concept:C0332232lld:lifeskim
pubmed-article:10576408lifeskim:mentionsumls-concept:C1705241lld:lifeskim
pubmed-article:10576408lifeskim:mentionsumls-concept:C1512571lld:lifeskim
pubmed-article:10576408lifeskim:mentionsumls-concept:C1705242lld:lifeskim
pubmed-article:10576408pubmed:issue4lld:pubmed
pubmed-article:10576408pubmed:dateCreated1999-12-22lld:pubmed
pubmed-article:10576408pubmed:abstractTextThis article deals with a unifying approach to approximate sample size determination for different types of hypotheses formulated in terms of two means of normally distributed data. A simple approximation is given to the sample size required for testing hypotheses about the ratio of the means. The formula includes the situations of testing noninferiority, superiority, or equivalence. We present a more general formula that also covers hypotheses formulated in terms of the difference of means. We show that over a wide range of parameter values the approximation provides reliable sample sizes.lld:pubmed
pubmed-article:10576408pubmed:languageenglld:pubmed
pubmed-article:10576408pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10576408pubmed:citationSubsetIMlld:pubmed
pubmed-article:10576408pubmed:statusMEDLINElld:pubmed
pubmed-article:10576408pubmed:monthNovlld:pubmed
pubmed-article:10576408pubmed:issn1054-3406lld:pubmed
pubmed-article:10576408pubmed:authorpubmed-author:HauschkeDDlld:pubmed
pubmed-article:10576408pubmed:authorpubmed-author:KieserMMlld:pubmed
pubmed-article:10576408pubmed:issnTypePrintlld:pubmed
pubmed-article:10576408pubmed:volume9lld:pubmed
pubmed-article:10576408pubmed:ownerNLMlld:pubmed
pubmed-article:10576408pubmed:authorsCompleteYlld:pubmed
pubmed-article:10576408pubmed:pagination641-50lld:pubmed
pubmed-article:10576408pubmed:dateRevised2007-11-15lld:pubmed
pubmed-article:10576408pubmed:meshHeadingpubmed-meshheading:10576408...lld:pubmed
pubmed-article:10576408pubmed:meshHeadingpubmed-meshheading:10576408...lld:pubmed
pubmed-article:10576408pubmed:meshHeadingpubmed-meshheading:10576408...lld:pubmed
pubmed-article:10576408pubmed:meshHeadingpubmed-meshheading:10576408...lld:pubmed
pubmed-article:10576408pubmed:meshHeadingpubmed-meshheading:10576408...lld:pubmed
pubmed-article:10576408pubmed:meshHeadingpubmed-meshheading:10576408...lld:pubmed
pubmed-article:10576408pubmed:year1999lld:pubmed
pubmed-article:10576408pubmed:articleTitleApproximate sample sizes for testing hypotheses about the ratio and difference of two means.lld:pubmed
pubmed-article:10576408pubmed:affiliationDepartment of Biometry, Dr. Willmar Schwabe Pharmaceuticals, Karlsruhe, Germany.lld:pubmed
pubmed-article:10576408pubmed:publicationTypeJournal Articlelld:pubmed