Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10426334rdf:typepubmed:Citationlld:pubmed
pubmed-article:10426334lifeskim:mentionsumls-concept:C0007226lld:lifeskim
pubmed-article:10426334lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:10426334lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:10426334lifeskim:mentionsumls-concept:C0683325lld:lifeskim
pubmed-article:10426334lifeskim:mentionsumls-concept:C1274040lld:lifeskim
pubmed-article:10426334lifeskim:mentionsumls-concept:C0205396lld:lifeskim
pubmed-article:10426334lifeskim:mentionsumls-concept:C0242356lld:lifeskim
pubmed-article:10426334pubmed:issue2lld:pubmed
pubmed-article:10426334pubmed:dateCreated1999-8-4lld:pubmed
pubmed-article:10426334pubmed:abstractTextThe objective of this study was to assess whether administrative (claims) databases can be used to assess clinical variables and predict outcome. Although administrative databases are useful for assessing resource utilization, their utility for assessing clinical information is less certain. Prospectively gathered clinical databases, however, are expensive and not widely available. The UB92 formulation of the hospital bill was used as an administrative source of data and compared with the clinical cardiovascular database at Emory University. The claims database was compared with the clinical database for 11 variables. Outcome models were developed with multivariate methods. A total of 11,883 patients who underwent catheterization (5,255 underwent percutaneous transluminal coronary angioplasty [PTCA] and 3,794 underwent coronary artery bypass surgery [CABG]) between 1991 and 1995 were included. For some variables, the claims database correlated well (diabetes, sensitivity 87%, specificity 99%), whereas for others the claims database was less accurate (peripheral vascular disease, sensitivity 20%, specificity 99%). Uncertain coding in the claims database, which can result in the same code being used for co-morbid states and severity of disease, as well as complications, limited the ability of claims to predict outcome. Clinical databases may also be limited by lack of objectivity and missing data. The utility of claims databases to assess severity of disease and co-morbid states is limited, and outcome modeling and risk assessment from claims databases may be inappropriate and spurious. Developing better data standards and less expensive methods for acquisition of clinical data is necessary for improved outcome assessment.lld:pubmed
pubmed-article:10426334pubmed:languageenglld:pubmed
pubmed-article:10426334pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10426334pubmed:citationSubsetAIMlld:pubmed
pubmed-article:10426334pubmed:statusMEDLINElld:pubmed
pubmed-article:10426334pubmed:monthJullld:pubmed
pubmed-article:10426334pubmed:issn0002-9149lld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:MahoneyEElld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:SaundersCClld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:ShawLLlld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:MorrisD CDClld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:ConnollySSlld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:WeintraubW...lld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:BeckerE RERlld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:BoccuzziS JSJlld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:CullerSSlld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:CanupDDlld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:DeatonCClld:pubmed
pubmed-article:10426334pubmed:authorpubmed-author:KosinskiAAlld:pubmed
pubmed-article:10426334pubmed:issnTypePrintlld:pubmed
pubmed-article:10426334pubmed:day15lld:pubmed
pubmed-article:10426334pubmed:volume84lld:pubmed
pubmed-article:10426334pubmed:ownerNLMlld:pubmed
pubmed-article:10426334pubmed:authorsCompleteYlld:pubmed
pubmed-article:10426334pubmed:pagination166-9lld:pubmed
pubmed-article:10426334pubmed:dateRevised2007-11-15lld:pubmed
pubmed-article:10426334pubmed:meshHeadingpubmed-meshheading:10426334...lld:pubmed
pubmed-article:10426334pubmed:meshHeadingpubmed-meshheading:10426334...lld:pubmed
pubmed-article:10426334pubmed:meshHeadingpubmed-meshheading:10426334...lld:pubmed
pubmed-article:10426334pubmed:meshHeadingpubmed-meshheading:10426334...lld:pubmed
pubmed-article:10426334pubmed:meshHeadingpubmed-meshheading:10426334...lld:pubmed
pubmed-article:10426334pubmed:meshHeadingpubmed-meshheading:10426334...lld:pubmed
pubmed-article:10426334pubmed:meshHeadingpubmed-meshheading:10426334...lld:pubmed
pubmed-article:10426334pubmed:meshHeadingpubmed-meshheading:10426334...lld:pubmed
pubmed-article:10426334pubmed:meshHeadingpubmed-meshheading:10426334...lld:pubmed
pubmed-article:10426334pubmed:meshHeadingpubmed-meshheading:10426334...lld:pubmed
pubmed-article:10426334pubmed:meshHeadingpubmed-meshheading:10426334...lld:pubmed
pubmed-article:10426334pubmed:year1999lld:pubmed
pubmed-article:10426334pubmed:articleTitleCan cardiovascular clinical characteristics be identified and outcome models be developed from an in-patient claims database?lld:pubmed
pubmed-article:10426334pubmed:affiliationDepartment of Medicine, School of Medicine, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA. bill@hp3.eushc.orglld:pubmed
pubmed-article:10426334pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:10426334pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:10426334pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10426334lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10426334lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10426334lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10426334lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10426334lld:pubmed