Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10412410rdf:typepubmed:Citationlld:pubmed
pubmed-article:10412410lifeskim:mentionsumls-concept:C0037315lld:lifeskim
pubmed-article:10412410lifeskim:mentionsumls-concept:C0031354lld:lifeskim
pubmed-article:10412410lifeskim:mentionsumls-concept:C0185125lld:lifeskim
pubmed-article:10412410lifeskim:mentionsumls-concept:C0870071lld:lifeskim
pubmed-article:10412410pubmed:issue3lld:pubmed
pubmed-article:10412410pubmed:dateCreated1999-8-17lld:pubmed
pubmed-article:10412410pubmed:abstractTextA three-dimensional numerical modeling of airflow in the human pharynx using an anatomically accurate model was conducted. The pharynx walls were assumed to be passive and rigid. The results showed that the pressure drop in the pharynx lies in the range 200-500 Pa. The onset of turbulence was found to increase the pressure drop by 40 percent. A wide range of pharynx geometries covering three sleep apnea treatment therapies (CPAP, mandibular repositioning devices, and surgery) were modeled and the resulting flow characteristics were investigated and compared. The results confirmed that the airflow in the pharynx lies in the laminar-to-turbulence transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies can significantly affect the airflow characteristics.lld:pubmed
pubmed-article:10412410pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10412410pubmed:languageenglld:pubmed
pubmed-article:10412410pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10412410pubmed:citationSubsetIMlld:pubmed
pubmed-article:10412410pubmed:statusMEDLINElld:pubmed
pubmed-article:10412410pubmed:monthJunlld:pubmed
pubmed-article:10412410pubmed:issn0148-0731lld:pubmed
pubmed-article:10412410pubmed:authorpubmed-author:RobertsDDlld:pubmed
pubmed-article:10412410pubmed:authorpubmed-author:PrasadA KAKlld:pubmed
pubmed-article:10412410pubmed:authorpubmed-author:ShomeBBlld:pubmed
pubmed-article:10412410pubmed:authorpubmed-author:WangL PLPlld:pubmed
pubmed-article:10412410pubmed:authorpubmed-author:SantareM HMHlld:pubmed
pubmed-article:10412410pubmed:authorpubmed-author:SzeriA ZAZlld:pubmed
pubmed-article:10412410pubmed:issnTypePrintlld:pubmed
pubmed-article:10412410pubmed:volume120lld:pubmed
pubmed-article:10412410pubmed:ownerNLMlld:pubmed
pubmed-article:10412410pubmed:authorsCompleteYlld:pubmed
pubmed-article:10412410pubmed:pagination416-22lld:pubmed
pubmed-article:10412410pubmed:dateRevised2007-11-14lld:pubmed
pubmed-article:10412410pubmed:meshHeadingpubmed-meshheading:10412410...lld:pubmed
pubmed-article:10412410pubmed:meshHeadingpubmed-meshheading:10412410...lld:pubmed
pubmed-article:10412410pubmed:meshHeadingpubmed-meshheading:10412410...lld:pubmed
pubmed-article:10412410pubmed:meshHeadingpubmed-meshheading:10412410...lld:pubmed
pubmed-article:10412410pubmed:meshHeadingpubmed-meshheading:10412410...lld:pubmed
pubmed-article:10412410pubmed:year1998lld:pubmed
pubmed-article:10412410pubmed:articleTitleModeling of airflow in the pharynx with application to sleep apnea.lld:pubmed
pubmed-article:10412410pubmed:affiliationDepartment of Mechanical Engineering, University of Delaware, Newark 19716-3140, USA.lld:pubmed
pubmed-article:10412410pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:10412410pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed