Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10380194rdf:typepubmed:Citationlld:pubmed
pubmed-article:10380194lifeskim:mentionsumls-concept:C0019453lld:lifeskim
pubmed-article:10380194lifeskim:mentionsumls-concept:C1280500lld:lifeskim
pubmed-article:10380194lifeskim:mentionsumls-concept:C0002518lld:lifeskim
pubmed-article:10380194lifeskim:mentionsumls-concept:C1624581lld:lifeskim
pubmed-article:10380194lifeskim:mentionsumls-concept:C0870071lld:lifeskim
pubmed-article:10380194lifeskim:mentionsumls-concept:C0205250lld:lifeskim
pubmed-article:10380194lifeskim:mentionsumls-concept:C0079411lld:lifeskim
pubmed-article:10380194lifeskim:mentionsumls-concept:C1293132lld:lifeskim
pubmed-article:10380194pubmed:dateCreated1999-8-10lld:pubmed
pubmed-article:10380194pubmed:abstractTextHidden Markov Models (HMMs) provide a flexible method for representing protein sequence data. Highly divergent data require a more complex approach to HMM generation than previously demonstrated. We describe a strategy of motif anchoring and sub-class modeling that aids in the construction of more informative HMMs as determined by a new algorithm called a stability measure.lld:pubmed
pubmed-article:10380194pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10380194pubmed:languageenglld:pubmed
pubmed-article:10380194pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10380194pubmed:citationSubsetIMlld:pubmed
pubmed-article:10380194pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10380194pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10380194pubmed:statusMEDLINElld:pubmed
pubmed-article:10380194pubmed:issn1793-5091lld:pubmed
pubmed-article:10380194pubmed:authorpubmed-author:KowalskiJJlld:pubmed
pubmed-article:10380194pubmed:authorpubmed-author:McclureM AMAlld:pubmed
pubmed-article:10380194pubmed:issnTypePrintlld:pubmed
pubmed-article:10380194pubmed:ownerNLMlld:pubmed
pubmed-article:10380194pubmed:authorsCompleteYlld:pubmed
pubmed-article:10380194pubmed:pagination162-70lld:pubmed
pubmed-article:10380194pubmed:dateRevised2007-11-14lld:pubmed
pubmed-article:10380194pubmed:meshHeadingpubmed-meshheading:10380194...lld:pubmed
pubmed-article:10380194pubmed:meshHeadingpubmed-meshheading:10380194...lld:pubmed
pubmed-article:10380194pubmed:meshHeadingpubmed-meshheading:10380194...lld:pubmed
pubmed-article:10380194pubmed:meshHeadingpubmed-meshheading:10380194...lld:pubmed
pubmed-article:10380194pubmed:meshHeadingpubmed-meshheading:10380194...lld:pubmed
pubmed-article:10380194pubmed:meshHeadingpubmed-meshheading:10380194...lld:pubmed
pubmed-article:10380194pubmed:meshHeadingpubmed-meshheading:10380194...lld:pubmed
pubmed-article:10380194pubmed:meshHeadingpubmed-meshheading:10380194...lld:pubmed
pubmed-article:10380194pubmed:meshHeadingpubmed-meshheading:10380194...lld:pubmed
pubmed-article:10380194pubmed:meshHeadingpubmed-meshheading:10380194...lld:pubmed
pubmed-article:10380194pubmed:meshHeadingpubmed-meshheading:10380194...lld:pubmed
pubmed-article:10380194pubmed:year1999lld:pubmed
pubmed-article:10380194pubmed:articleTitleThe effects of ordered-series-of-motifs anchoring and sub-class modeling on the generation of HMMs representing highly divergent protein sequences.lld:pubmed
pubmed-article:10380194pubmed:affiliationDepartment of Biological Sciences, UNLV, Las Vegas, NV 89129, USA.lld:pubmed
pubmed-article:10380194pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:10380194pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed