pubmed-article:10249180 | pubmed:abstractText | We consider a priority queue in steady state with N servers, two classes of customers, and a cutoff service discipline. Low priority arrivals are "cut off" (refused immediate service) and placed in a queue whenever N1 or more servers are busy, in order to keep N-N1 servers free for high priority arrivals. A Poisson arrival process for each class, and a common exponential service rate, are assumed. Two models are considered: one where high priority customers queue for service and one where they are lost if all servers are busy at an arrival epoch. Results are obtained for the probability of n servers busy, the expected low priority waiting time, and (in the case where high priority customers do not queue) the complete low priority waiting time distribution. The results are applied to determine the number of ambulances required in an urban fleet which serves both emergency calls and low priority patients transfers. | lld:pubmed |