Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10217331rdf:typepubmed:Citationlld:pubmed
pubmed-article:10217331lifeskim:mentionsumls-concept:C0031327lld:lifeskim
pubmed-article:10217331lifeskim:mentionsumls-concept:C0030511lld:lifeskim
pubmed-article:10217331lifeskim:mentionsumls-concept:C0242485lld:lifeskim
pubmed-article:10217331lifeskim:mentionsumls-concept:C0018810lld:lifeskim
pubmed-article:10217331lifeskim:mentionsumls-concept:C0851347lld:lifeskim
pubmed-article:10217331lifeskim:mentionsumls-concept:C0242896lld:lifeskim
pubmed-article:10217331lifeskim:mentionsumls-concept:C1883073lld:lifeskim
pubmed-article:10217331lifeskim:mentionsumls-concept:C0936012lld:lifeskim
pubmed-article:10217331lifeskim:mentionsumls-concept:C0079809lld:lifeskim
pubmed-article:10217331lifeskim:mentionsumls-concept:C0392762lld:lifeskim
pubmed-article:10217331lifeskim:mentionsumls-concept:C2827666lld:lifeskim
pubmed-article:10217331pubmed:issue2lld:pubmed
pubmed-article:10217331pubmed:dateCreated1999-6-29lld:pubmed
pubmed-article:10217331pubmed:abstractTextThe time course and concentration-effect relationship of parasympatholytic effects of three anticholinergic drugs were investigated using spectral analysis of heart rate (HR) variability. Single intravenous (i.v.) doses of atropine (10 microg/kg), glycopyrrolate (5 microg/kg), scopolamine (5 microg/kg), and placebo were given to eight healthy volunteers in a double-blind, randomized cross-over study. Electrocardiogram (ECG) was recorded at baseline and 2.5, 5, 10, 20, and 30 minutes, and 1, 1.5, 2, 3, 4, 5, and 6 hours after drug administration, while the subjects breathed at a fixed 0.25 Hz frequency. The powers of two frequency bands (low frequency [LF] = 0.07-0.15 Hz and high frequency [HF] = 0.15-0.40 Hz) were calculated using stationary time series of R-R intervals (RRI) free from ectopic beats. To perform pharmacokinetic-pharmacodynamic (PK-PD) modeling, venous plasma drug concentrations were measured. Atropine and glycopyrrolate, and, to a lesser extent, scopolamine induced decreases in HF power and increases in LF/HF ratio of HR variability, indicating parasympatholytic activity and corresponding changes in sympathovagal balance. Maximal average decreases in HF power were 99%, 94%, and 82%, respectively, but in two scopolamine subjects, a parasympathomimetic effect was dominant. Interindividual variability was least for the Hayano index of HF power (square root (RRI HF-power)/RRI*100), and profound and consistent decreases were seen after atropine and glycopyrrolate. Pharmacokinetics were best fitted to a two-compartment open model, and effect compartment link modeling using the Hayano index was performed with the atropine and glycopyrrolate data. The best description of the PK-PD relationship for both drugs was achieved using the sigmoidal Emax model. Mean (+/-SD) EC50, sigmoidicity factor (gamma), and equilibration rate constant (k(e0)) estimates were 1.35 (+/-0.27) ng/mL, 6.07 (+/-1.98) and 11.0 (+/-5.28) l/h for atropine and 1.35 (+/-0.49) ng/mL, 4.34 (+/-1.55) and 2.26 (+/-0.81) l/h for glycopyrrolate. Spectral analysis of HR variability appears to be a powerful tool in monitoring parasympatholytic drug activity. A sigmoidal Emax model with an extremely steep concentration-response relationship was revealed for atropine and glycopyrrolate. The effects of scopolamine were more incongruous.lld:pubmed
pubmed-article:10217331pubmed:languageenglld:pubmed
pubmed-article:10217331pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10217331pubmed:citationSubsetIMlld:pubmed
pubmed-article:10217331pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10217331pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10217331pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10217331pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10217331pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10217331pubmed:statusMEDLINElld:pubmed
pubmed-article:10217331pubmed:monthAprlld:pubmed
pubmed-article:10217331pubmed:issn0163-4356lld:pubmed
pubmed-article:10217331pubmed:authorpubmed-author:KantoJJlld:pubmed
pubmed-article:10217331pubmed:authorpubmed-author:GrönroosPPlld:pubmed
pubmed-article:10217331pubmed:authorpubmed-author:BoschJ AJAlld:pubmed
pubmed-article:10217331pubmed:authorpubmed-author:ScheininHHlld:pubmed
pubmed-article:10217331pubmed:authorpubmed-author:KuuselaTTlld:pubmed
pubmed-article:10217331pubmed:authorpubmed-author:KailaTTlld:pubmed
pubmed-article:10217331pubmed:authorpubmed-author:HelminenAAlld:pubmed
pubmed-article:10217331pubmed:authorpubmed-author:HuhtalaSSlld:pubmed
pubmed-article:10217331pubmed:issnTypePrintlld:pubmed
pubmed-article:10217331pubmed:volume21lld:pubmed
pubmed-article:10217331pubmed:ownerNLMlld:pubmed
pubmed-article:10217331pubmed:authorsCompleteYlld:pubmed
pubmed-article:10217331pubmed:pagination141-51lld:pubmed
pubmed-article:10217331pubmed:dateRevised2011-11-17lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:meshHeadingpubmed-meshheading:10217331...lld:pubmed
pubmed-article:10217331pubmed:year1999lld:pubmed
pubmed-article:10217331pubmed:articleTitleSpectral analysis of heart rate variability as a quantitative measure of parasympatholytic effect--integrated pharmacokinetics and pharmacodynamics of three anticholinergic drugs.lld:pubmed
pubmed-article:10217331pubmed:affiliationDepartment of Clinical Pharmacology, Turku University Hospital, Finland.lld:pubmed
pubmed-article:10217331pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:10217331pubmed:publicationTypeClinical Triallld:pubmed
pubmed-article:10217331pubmed:publicationTypeRandomized Controlled Triallld:pubmed
pubmed-article:10217331pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10217331lld:pubmed