Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10171190rdf:typepubmed:Citationlld:pubmed
pubmed-article:10171190lifeskim:mentionsumls-concept:C0033325lld:lifeskim
pubmed-article:10171190lifeskim:mentionsumls-concept:C0242356lld:lifeskim
pubmed-article:10171190lifeskim:mentionsumls-concept:C0814225lld:lifeskim
pubmed-article:10171190lifeskim:mentionsumls-concept:C0449295lld:lifeskim
pubmed-article:10171190lifeskim:mentionsumls-concept:C0524727lld:lifeskim
pubmed-article:10171190lifeskim:mentionsumls-concept:C0936012lld:lifeskim
pubmed-article:10171190pubmed:issue2lld:pubmed
pubmed-article:10171190pubmed:dateCreated1992-8-27lld:pubmed
pubmed-article:10171190pubmed:abstractTextLarge databases are being used for outcome prediction analysis with increasing frequency. This review examines four separate databases used to provide risk analysis in the cardiac surgery population. Populations in the databases range in size from 3500 to over 116,000 patients. All of the databases were applied on the clinical, and in one instance, institutional level. Outcome prediction from databases is not without its limitations. Data collection, model bias, and methodologic variation all contribute to weaknesses in the application of databases for outcome prediction.lld:pubmed
pubmed-article:10171190pubmed:languageenglld:pubmed
pubmed-article:10171190pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10171190pubmed:citationSubsetTlld:pubmed
pubmed-article:10171190pubmed:statusMEDLINElld:pubmed
pubmed-article:10171190pubmed:monthAprlld:pubmed
pubmed-article:10171190pubmed:issn0268-4705lld:pubmed
pubmed-article:10171190pubmed:authorpubmed-author:ClarkR ERElld:pubmed
pubmed-article:10171190pubmed:authorpubmed-author:ParkS ESElld:pubmed
pubmed-article:10171190pubmed:authorpubmed-author:CmolikB LBLlld:pubmed
pubmed-article:10171190pubmed:issnTypePrintlld:pubmed
pubmed-article:10171190pubmed:volume7lld:pubmed
pubmed-article:10171190pubmed:ownerNLMlld:pubmed
pubmed-article:10171190pubmed:authorsCompleteYlld:pubmed
pubmed-article:10171190pubmed:pagination285-90lld:pubmed
pubmed-article:10171190pubmed:dateRevised2007-11-15lld:pubmed
pubmed-article:10171190pubmed:meshHeadingpubmed-meshheading:10171190...lld:pubmed
pubmed-article:10171190pubmed:meshHeadingpubmed-meshheading:10171190...lld:pubmed
pubmed-article:10171190pubmed:meshHeadingpubmed-meshheading:10171190...lld:pubmed
pubmed-article:10171190pubmed:meshHeadingpubmed-meshheading:10171190...lld:pubmed
pubmed-article:10171190pubmed:meshHeadingpubmed-meshheading:10171190...lld:pubmed
pubmed-article:10171190pubmed:meshHeadingpubmed-meshheading:10171190...lld:pubmed
pubmed-article:10171190pubmed:meshHeadingpubmed-meshheading:10171190...lld:pubmed
pubmed-article:10171190pubmed:year1992lld:pubmed
pubmed-article:10171190pubmed:articleTitleBenefits and limitations of database analysis for outcome prediction in cardiac surgery.lld:pubmed
pubmed-article:10171190pubmed:affiliationAllegheny-Singer Research Institute, Pittsburgh, Pennsylvania.lld:pubmed
pubmed-article:10171190pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:10171190pubmed:publicationTypeReviewlld:pubmed