pubmed-article:2202718 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:2202718 | lifeskim:mentions | umls-concept:C0023779 | lld:lifeskim |
pubmed-article:2202718 | lifeskim:mentions | umls-concept:C0542341 | lld:lifeskim |
pubmed-article:2202718 | lifeskim:mentions | umls-concept:C1514545 | lld:lifeskim |
pubmed-article:2202718 | lifeskim:mentions | umls-concept:C0037081 | lld:lifeskim |
pubmed-article:2202718 | lifeskim:mentions | umls-concept:C0005553 | lld:lifeskim |
pubmed-article:2202718 | lifeskim:mentions | umls-concept:C2603343 | lld:lifeskim |
pubmed-article:2202718 | lifeskim:mentions | umls-concept:C1314939 | lld:lifeskim |
pubmed-article:2202718 | pubmed:issue | 3 | lld:pubmed |
pubmed-article:2202718 | pubmed:dateCreated | 1990-9-28 | lld:pubmed |
pubmed-article:2202718 | pubmed:abstractText | This review discusses efforts to understand the mode of action of signal sequences by biophysical study of synthetic peptides corresponding to these protein localization signals. On the basis of reports from several laboratories, it is now clear that signal peptides may adopt a variety of conformations, depending on their local environment. In membrane-mimetic systems like detergent micelles or lipid vesicles, they have a high tendency to form alpha helices. Ability to take up a helical conformation appears to be required at some point in the function of a signal sequence, since some peptides corresponding to export-defective signal sequences display reduced helical potential. By contrast, functional signal sequences share a high capacity to adopt alpha helices. High affinity for organized lipid assemblies, like monolayers or vesicles, is also a property of functional signal sequences. This correlation suggests a role for direct interaction of signal sequences with the lipids of the cytoplasmic membrane in vivo. Supporting this role are studies of the influence of signal peptides on lipid structure, which reveal an ability of these peptides to perturb lipid packing and to alter the phase state of the lipids. Insertion of the signal sequence in vivo could substantially reduce the barrier for translocation of the mature chain. Lastly, synthetic signal peptides have been added to native membranes and found to inhibit translocation of precursor proteins. This approach bridges the biophysical and the biochemical aspects of protein export and promises to shed light on the functional correlates of the properties and interactions observed in model systems. | lld:pubmed |
pubmed-article:2202718 | pubmed:language | eng | lld:pubmed |
pubmed-article:2202718 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2202718 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:2202718 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2202718 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2202718 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2202718 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:2202718 | pubmed:month | Jun | lld:pubmed |
pubmed-article:2202718 | pubmed:issn | 0145-479X | lld:pubmed |
pubmed-article:2202718 | pubmed:author | pubmed-author:JonesJ DJD | lld:pubmed |
pubmed-article:2202718 | pubmed:author | pubmed-author:GieraschL MLM | lld:pubmed |
pubmed-article:2202718 | pubmed:author | pubmed-author:McKnightC JCJ | lld:pubmed |
pubmed-article:2202718 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:2202718 | pubmed:volume | 22 | lld:pubmed |
pubmed-article:2202718 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:2202718 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:2202718 | pubmed:pagination | 213-32 | lld:pubmed |
pubmed-article:2202718 | pubmed:dateRevised | 2005-11-16 | lld:pubmed |
pubmed-article:2202718 | pubmed:meshHeading | pubmed-meshheading:2202718-... | lld:pubmed |
pubmed-article:2202718 | pubmed:meshHeading | pubmed-meshheading:2202718-... | lld:pubmed |
pubmed-article:2202718 | pubmed:meshHeading | pubmed-meshheading:2202718-... | lld:pubmed |
pubmed-article:2202718 | pubmed:meshHeading | pubmed-meshheading:2202718-... | lld:pubmed |
pubmed-article:2202718 | pubmed:meshHeading | pubmed-meshheading:2202718-... | lld:pubmed |
pubmed-article:2202718 | pubmed:meshHeading | pubmed-meshheading:2202718-... | lld:pubmed |
pubmed-article:2202718 | pubmed:meshHeading | pubmed-meshheading:2202718-... | lld:pubmed |
pubmed-article:2202718 | pubmed:meshHeading | pubmed-meshheading:2202718-... | lld:pubmed |
pubmed-article:2202718 | pubmed:meshHeading | pubmed-meshheading:2202718-... | lld:pubmed |
pubmed-article:2202718 | pubmed:year | 1990 | lld:pubmed |
pubmed-article:2202718 | pubmed:articleTitle | Biophysical studies of signal peptides: implications for signal sequence functions and the involvement of lipid in protein export. | lld:pubmed |
pubmed-article:2202718 | pubmed:affiliation | Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235-9041. | lld:pubmed |
pubmed-article:2202718 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:2202718 | pubmed:publicationType | Review | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2202718 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2202718 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2202718 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2202718 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2202718 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2202718 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2202718 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2202718 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2202718 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2202718 | lld:pubmed |