Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19237760rdf:typepubmed:Citationlld:pubmed
pubmed-article:19237760lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:19237760lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:19237760lifeskim:mentionsumls-concept:C0005535lld:lifeskim
pubmed-article:19237760pubmed:issue4lld:pubmed
pubmed-article:19237760pubmed:dateCreated2009-2-24lld:pubmed
pubmed-article:19237760pubmed:abstractTextModels currently used have been developed to describe the storage response in the activated sludge process. In these models the distribution of the substrate flux between growth and storage is an empirical function. rRNA-structured biomass models are proposed to describe the metabolic status of cells in view of predicting the growth response (dmicro/dt) of cells in activated sludge process. The autocatalytic reaction rate of the synthesis of the PSS component (rRNA) can provide a mechanistic explanation for the growth response and the growth lag phase. The proposed models were able to describe and predict properly the growth response of the biomass in various types of reactor. Such models could be more widely applicable by using intrinsic model parameters. This would be a key improvement for as it would lead to improved models for design.lld:pubmed
pubmed-article:19237760pubmed:languageenglld:pubmed
pubmed-article:19237760pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19237760pubmed:citationSubsetIMlld:pubmed
pubmed-article:19237760pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19237760pubmed:statusMEDLINElld:pubmed
pubmed-article:19237760pubmed:issn0273-1223lld:pubmed
pubmed-article:19237760pubmed:authorpubmed-author:LessardPPlld:pubmed
pubmed-article:19237760pubmed:authorpubmed-author:VanrolleghemP...lld:pubmed
pubmed-article:19237760pubmed:authorpubmed-author:YuanZZlld:pubmed
pubmed-article:19237760pubmed:authorpubmed-author:LavalléeBBlld:pubmed
pubmed-article:19237760pubmed:authorpubmed-author:van...lld:pubmed
pubmed-article:19237760pubmed:authorpubmed-author:FrigonDDlld:pubmed
pubmed-article:19237760pubmed:issnTypePrintlld:pubmed
pubmed-article:19237760pubmed:volume59lld:pubmed
pubmed-article:19237760pubmed:ownerNLMlld:pubmed
pubmed-article:19237760pubmed:authorsCompleteYlld:pubmed
pubmed-article:19237760pubmed:pagination661-71lld:pubmed
pubmed-article:19237760pubmed:meshHeadingpubmed-meshheading:19237760...lld:pubmed
pubmed-article:19237760pubmed:meshHeadingpubmed-meshheading:19237760...lld:pubmed
pubmed-article:19237760pubmed:meshHeadingpubmed-meshheading:19237760...lld:pubmed
pubmed-article:19237760pubmed:meshHeadingpubmed-meshheading:19237760...lld:pubmed
pubmed-article:19237760pubmed:year2009lld:pubmed
pubmed-article:19237760pubmed:articleTitleModelling using rRNA-structured biomass models.lld:pubmed
pubmed-article:19237760pubmed:affiliationDépartement de génie civil, Université Laval, Québec, G1K 7P4, QC, Canada. bernard.lavallee.1@ulaval.calld:pubmed
pubmed-article:19237760pubmed:publicationTypeJournal Articlelld:pubmed