Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:18543993rdf:typepubmed:Citationlld:pubmed
pubmed-article:18543993lifeskim:mentionsumls-concept:C0011744lld:lifeskim
pubmed-article:18543993lifeskim:mentionsumls-concept:C0022237lld:lifeskim
pubmed-article:18543993lifeskim:mentionsumls-concept:C0022262lld:lifeskim
pubmed-article:18543993lifeskim:mentionsumls-concept:C0027270lld:lifeskim
pubmed-article:18543993lifeskim:mentionsumls-concept:C1280500lld:lifeskim
pubmed-article:18543993lifeskim:mentionsumls-concept:C0022702lld:lifeskim
pubmed-article:18543993lifeskim:mentionsumls-concept:C0301630lld:lifeskim
pubmed-article:18543993lifeskim:mentionsumls-concept:C0243071lld:lifeskim
pubmed-article:18543993lifeskim:mentionsumls-concept:C0441712lld:lifeskim
pubmed-article:18543993pubmed:issue13lld:pubmed
pubmed-article:18543993pubmed:dateCreated2008-6-27lld:pubmed
pubmed-article:18543993pubmed:abstractTextObserved pseudo-first-order rate constants (k(obs)) of the hydride-transfer reactions from isopropyl alcohol (i-PrOH) to two NAD(+) analogues, 9-phenylxanthylium ion (PhXn(+)) and 10-methylacridinium ion (MA(+)), were determined at temperatures ranging from 49 to 82 degrees C in i-PrOH containing various amounts of AN or water. Formations of the alcohol-cation ether adducts (ROPr-i) were observed as side equilibria. The equilibrium constants for the conversion of PhXn(+) to PhXnOPr-i in i-PrOH/AN (v/v = 1) were determined, and the equilibrium isotope effect (EIE = K(i-PrOH)/K(i-PrOD)) at 62 degrees C was calculated to be 2.67. The k(H) of the hydride-transfer step for both reactions were calculated on the basis of the k(obs) and K. The corresponding deuterium kinetic isotope effects (e.g., KIE(OD)(H) = k(H)(i-PrOH)/k(H)(i-PrOD) and KIE(beta-D6)(H) = k(obs)(i-PrOH)/k(obs)((CD3)2CHOH)), as well as the activation parameters, were derived. For the reaction of PhXn(+) (62 degrees C) and MA(+) (67 degrees C), primary KIE(alpha-D)(H) (4.4 and 2.1, respectively) as well as secondary KIE(OD)(H) (1.07 and 1.18) and KIE(beta-D6)(H) (1.1 and 1.5) were observed. The observed EIE and KIE(OD)(H) were explained in terms of the fractionation factors for deuterium between OH and OH(+)(OH(delta+)) sites. The observed inverse kinetic solvent isotope effect for the reaction of PhXn(+) (k(obs)(i-PrOH)/k(obs)(i-PrOD) = 0.39) is consistent with the intermolecular hydride-transfer mechanism. The dramatic reduction of the reaction rate for MA(+), when the water or i-PrOH cosolvent was replaced by AN, suggests that the hydride-transfer T.S. is stabilized by H-bonding between O of the solvent OH and the substrate alcohol OH(delta+). This result suggests an H-bonding stabilization effect on the T.S. of the alcohol dehydrogenase reactions.lld:pubmed
pubmed-article:18543993pubmed:languageenglld:pubmed
pubmed-article:18543993pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18543993pubmed:citationSubsetIMlld:pubmed
pubmed-article:18543993pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18543993pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18543993pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18543993pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18543993pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18543993pubmed:statusMEDLINElld:pubmed
pubmed-article:18543993pubmed:monthJullld:pubmed
pubmed-article:18543993pubmed:issn1520-6904lld:pubmed
pubmed-article:18543993pubmed:authorpubmed-author:LuYunYlld:pubmed
pubmed-article:18543993pubmed:authorpubmed-author:MooreBrianBlld:pubmed
pubmed-article:18543993pubmed:authorpubmed-author:QuFengruiFlld:pubmed
pubmed-article:18543993pubmed:authorpubmed-author:EndicottDonal...lld:pubmed
pubmed-article:18543993pubmed:authorpubmed-author:KuesterWillia...lld:pubmed
pubmed-article:18543993pubmed:issnTypeElectroniclld:pubmed
pubmed-article:18543993pubmed:day4lld:pubmed
pubmed-article:18543993pubmed:volume73lld:pubmed
pubmed-article:18543993pubmed:ownerNLMlld:pubmed
pubmed-article:18543993pubmed:authorsCompleteYlld:pubmed
pubmed-article:18543993pubmed:pagination4763-70lld:pubmed
pubmed-article:18543993pubmed:meshHeadingpubmed-meshheading:18543993...lld:pubmed
pubmed-article:18543993pubmed:meshHeadingpubmed-meshheading:18543993...lld:pubmed
pubmed-article:18543993pubmed:meshHeadingpubmed-meshheading:18543993...lld:pubmed
pubmed-article:18543993pubmed:meshHeadingpubmed-meshheading:18543993...lld:pubmed
pubmed-article:18543993pubmed:meshHeadingpubmed-meshheading:18543993...lld:pubmed
pubmed-article:18543993pubmed:meshHeadingpubmed-meshheading:18543993...lld:pubmed
pubmed-article:18543993pubmed:meshHeadingpubmed-meshheading:18543993...lld:pubmed
pubmed-article:18543993pubmed:meshHeadingpubmed-meshheading:18543993...lld:pubmed
pubmed-article:18543993pubmed:year2008lld:pubmed
pubmed-article:18543993pubmed:articleTitleHydride reduction of NAD+ analogues by isopropyl alcohol: kinetics, deuterium isotope effects and mechanism.lld:pubmed
pubmed-article:18543993pubmed:affiliationDepartment of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, USA. yulu@siue.edulld:pubmed
pubmed-article:18543993pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:18543993pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed