Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:11112509rdf:typepubmed:Citationlld:pubmed
pubmed-article:11112509lifeskim:mentionsumls-concept:C0014279lld:lifeskim
pubmed-article:11112509lifeskim:mentionsumls-concept:C2004454lld:lifeskim
pubmed-article:11112509lifeskim:mentionsumls-concept:C1514562lld:lifeskim
pubmed-article:11112509lifeskim:mentionsumls-concept:C1706211lld:lifeskim
pubmed-article:11112509lifeskim:mentionsumls-concept:C0007961lld:lifeskim
pubmed-article:11112509lifeskim:mentionsumls-concept:C1546426lld:lifeskim
pubmed-article:11112509lifeskim:mentionsumls-concept:C1548280lld:lifeskim
pubmed-article:11112509pubmed:issue10lld:pubmed
pubmed-article:11112509pubmed:dateCreated2001-1-8lld:pubmed
pubmed-article:11112509pubmed:abstractTextWe have created protein domains with extreme surface charge. These mutated domains allow for ion-exchange chromatography under conditions favourable for selective and efficient capture, using Escherichia coli as a host organism. The staphylococcal protein A-derived domain Z (Zwt) was used as a scaffold when constructing two mutants, Zbasic1 and Zbasic2, with high positive surface charge. Far-ultraviolet circular dichroism measurements showed that they have a secondary structure content comparable to the parental molecule Zwt. Although melting temperatures (Tm) of the engineered domains were lower than that of the wild-type Z domain, both mutants could be produced successfully as intracellular full-length products in E. coli and purified to homogeneity by ion-exchange chromatography. Further studies performed on Zbasic1 and Zbasic2 showed that they were able to bind to a cation exchanger even at pH values in the 9 to 11 range. A gene fusion between Zbasic2 and the acidic human serum albumin binding domain (ABD), derived from streptococcal protein G, was also constructed. The gene product Zbasic2-ABD could be purified using cation-exchange chromatography from a whole cell lysate to more than 90% purity.lld:pubmed
pubmed-article:11112509pubmed:languageenglld:pubmed
pubmed-article:11112509pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11112509pubmed:citationSubsetIMlld:pubmed
pubmed-article:11112509pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11112509pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11112509pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11112509pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11112509pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11112509pubmed:statusMEDLINElld:pubmed
pubmed-article:11112509pubmed:monthOctlld:pubmed
pubmed-article:11112509pubmed:issn0269-2139lld:pubmed
pubmed-article:11112509pubmed:authorpubmed-author:LundinGGlld:pubmed
pubmed-article:11112509pubmed:authorpubmed-author:UhlénMMlld:pubmed
pubmed-article:11112509pubmed:authorpubmed-author:HoberSSlld:pubmed
pubmed-article:11112509pubmed:authorpubmed-author:NygrenP APAlld:pubmed
pubmed-article:11112509pubmed:authorpubmed-author:GräslundTTlld:pubmed
pubmed-article:11112509pubmed:issnTypePrintlld:pubmed
pubmed-article:11112509pubmed:volume13lld:pubmed
pubmed-article:11112509pubmed:ownerNLMlld:pubmed
pubmed-article:11112509pubmed:authorsCompleteYlld:pubmed
pubmed-article:11112509pubmed:pagination703-9lld:pubmed
pubmed-article:11112509pubmed:dateRevised2008-11-21lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:meshHeadingpubmed-meshheading:11112509...lld:pubmed
pubmed-article:11112509pubmed:year2000lld:pubmed
pubmed-article:11112509pubmed:articleTitleCharge engineering of a protein domain to allow efficient ion-exchange recovery.lld:pubmed
pubmed-article:11112509pubmed:affiliationDepartment of Biotechnology, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden.lld:pubmed
pubmed-article:11112509pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:11112509pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed