Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
2
|
pubmed:dateCreated |
1989-4-19
|
pubmed:abstractText |
It is shown that any two-locus, two-allele model of selection with constant fitnesses has at least one polymorphic equilibrium for which the linkage association measure, D, is arbitrarily close to zero for large enough recombination, R. As R----+/- infinity, D----0 in such a way that the product l = RD----a non-zero finite constant. There may be 1, 3, or 5 distinct asymptotic equilibria, depending upon fitness parameters.
|
pubmed:grant | |
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:month |
Oct
|
pubmed:issn |
0040-5809
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
34
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
177-93
|
pubmed:dateRevised |
2010-11-18
|
pubmed:meshHeading |
pubmed-meshheading:3232120-Alleles,
pubmed-meshheading:3232120-Animals,
pubmed-meshheading:3232120-Genetic Linkage,
pubmed-meshheading:3232120-Grasshoppers,
pubmed-meshheading:3232120-Models, Genetic,
pubmed-meshheading:3232120-Polymorphism, Genetic,
pubmed-meshheading:3232120-Recombination, Genetic,
pubmed-meshheading:3232120-Selection, Genetic
|
pubmed:year |
1988
|
pubmed:articleTitle |
A general asymptotic property of two-locus selection models.
|
pubmed:affiliation |
Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138.
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, P.H.S.,
Research Support, U.S. Gov't, Non-P.H.S.
|