Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21572184rdf:typepubmed:Citationlld:pubmed
pubmed-article:21572184lifeskim:mentionsumls-concept:C0025663lld:lifeskim
pubmed-article:21572184lifeskim:mentionsumls-concept:C0034603lld:lifeskim
pubmed-article:21572184lifeskim:mentionsumls-concept:C0085089lld:lifeskim
pubmed-article:21572184lifeskim:mentionsumls-concept:C1883073lld:lifeskim
pubmed-article:21572184lifeskim:mentionsumls-concept:C2349182lld:lifeskim
pubmed-article:21572184lifeskim:mentionsumls-concept:C0719517lld:lifeskim
pubmed-article:21572184pubmed:issue11lld:pubmed
pubmed-article:21572184pubmed:dateCreated2011-5-16lld:pubmed
pubmed-article:21572184pubmed:abstractTextThe recent emergence of radiochromic dosimeters with low inherent light-scattering presents the possibility of fast 3D dosimetry using broad-beam optical computed tomography (optical-CT). Current broad beam scanners typically employ either a single or a planar array of light-emitting diodes (LED) for the light source. The spectrum of light from LED sources is polychromatic and this, in combination with the non-uniform spectral absorption of the dosimeter, can introduce spectral artifacts arising from preferential absorption of photons at the peak absorption wavelengths in the dosimeter. Spectral artifacts can lead to large errors in the reconstructed attenuation coefficients, and hence dose measurement. This work presents an analytic method for correcting for spectral artifacts which can be applied if the spectral characteristics of the light source, absorbing dosimeter, and imaging detector are known or can be measured. The method is implemented here for a PRESAGE® dosimeter scanned with the DLOS telecentric scanner (Duke Large field-of-view Optical-CT Scanner). Emission and absorption profiles were measured with a commercial spectrometer and spectrophotometer, respectively. Simulations are presented that show spectral changes can introduce errors of 8% for moderately attenuating samples where spectral artifacts are less pronounced. The correction is evaluated by application to a 16 cm diameter PRESAGE® cylindrical dosimeter irradiated along the axis with two partially overlapping 6 × 6 cm fields of different doses. The resulting stepped dose distribution facilitates evaluation of the correction as each step had different spectral contributions. The spectral artifact correction was found to accurately correct the reconstructed coefficients to within ?1.5%, improved from ?7.5%, for normalized dose distributions. In conclusion, for situations where spectral artifacts cannot be removed by physical filters, the method shown here is an effective correction. Physical filters may be less viable if they introduce strong sensitivity to Schlieren bands in the dosimeters.lld:pubmed
pubmed-article:21572184pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21572184pubmed:languageenglld:pubmed
pubmed-article:21572184pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21572184pubmed:citationSubsetIMlld:pubmed
pubmed-article:21572184pubmed:statusMEDLINElld:pubmed
pubmed-article:21572184pubmed:monthJunlld:pubmed
pubmed-article:21572184pubmed:issn1361-6560lld:pubmed
pubmed-article:21572184pubmed:authorpubmed-author:ThomasAndrewAlld:pubmed
pubmed-article:21572184pubmed:authorpubmed-author:OldhamMarkMlld:pubmed
pubmed-article:21572184pubmed:authorpubmed-author:JordanKevinKlld:pubmed
pubmed-article:21572184pubmed:authorpubmed-author:PierquetMicha...lld:pubmed
pubmed-article:21572184pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21572184pubmed:day7lld:pubmed
pubmed-article:21572184pubmed:volume56lld:pubmed
pubmed-article:21572184pubmed:ownerNLMlld:pubmed
pubmed-article:21572184pubmed:authorsCompleteYlld:pubmed
pubmed-article:21572184pubmed:pagination3403-16lld:pubmed
pubmed-article:21572184pubmed:dateRevised2011-11-10lld:pubmed
pubmed-article:21572184pubmed:meshHeadingpubmed-meshheading:21572184...lld:pubmed
pubmed-article:21572184pubmed:meshHeadingpubmed-meshheading:21572184...lld:pubmed
pubmed-article:21572184pubmed:meshHeadingpubmed-meshheading:21572184...lld:pubmed
pubmed-article:21572184pubmed:meshHeadingpubmed-meshheading:21572184...lld:pubmed
pubmed-article:21572184pubmed:meshHeadingpubmed-meshheading:21572184...lld:pubmed
pubmed-article:21572184pubmed:meshHeadingpubmed-meshheading:21572184...lld:pubmed
pubmed-article:21572184pubmed:meshHeadingpubmed-meshheading:21572184...lld:pubmed
pubmed-article:21572184pubmed:meshHeadingpubmed-meshheading:21572184...lld:pubmed
pubmed-article:21572184pubmed:year2011lld:pubmed
pubmed-article:21572184pubmed:articleTitleA method to correct for spectral artifacts in optical-CT dosimetry.lld:pubmed
pubmed-article:21572184pubmed:affiliationDuke University, Durham, NC, USA. ast5@duke.edulld:pubmed
pubmed-article:21572184pubmed:publicationTypeJournal Articlelld:pubmed