Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
Pt 1
pubmed:dateCreated
2010-9-30
pubmed:abstractText
Diffusion tensor imaging (DTI) is important for characterizing the structure of white matter fiber bundles as well as detailed tissue properties along these fiber bundles in vivo. There has been extensive interest in the analysis of diffusion properties measured along fiber tracts as a function of age, diagnostic status, and gender, while controlling for other clinical variables. However, the existing methods have several limitations including the independent analysis of diffusion properties, a lack of method for accounting for multiple covariates, and a lack of formal statistical inference, such as estimation theory and hypothesis testing. This paper presents a statistical framework, called VCMTS, to specifically address these limitations. The VCMTS framework consists of four integrated components: a varying coefficient model for characterizing the association between fiber bundle diffusion properties and a set of covariates, the local polynomial kernel method for estimating smoothed multiple diffusion properties along individual fiber bundles, global and local test statistics for testing hypotheses of interest along fiber tracts, and a resampling method for approximating the p-value of the global test statistic. The proposed methodology is applied to characterizing the development of four diffusion properties along the splenium and genu of the corpus callosum tract in a study of neurodevelopment in healthy rhesus monkeys. Significant time effects on the four diffusion properties were found.
pubmed:grant
http://linkedlifedata.com/resource/pubmed/grant/AG033387, http://linkedlifedata.com/resource/pubmed/grant/HD03110, http://linkedlifedata.com/resource/pubmed/grant/HD053000, http://linkedlifedata.com/resource/pubmed/grant/MH064065, http://linkedlifedata.com/resource/pubmed/grant/MH070890, http://linkedlifedata.com/resource/pubmed/grant/MH086633, http://linkedlifedata.com/resource/pubmed/grant/P01 CA142538-01, http://linkedlifedata.com/resource/pubmed/grant/P01 CA142538-02, http://linkedlifedata.com/resource/pubmed/grant/P01 DA022446-01A29002, http://linkedlifedata.com/resource/pubmed/grant/P01CA142538-01, http://linkedlifedata.com/resource/pubmed/grant/P41 RR005959-177912, http://linkedlifedata.com/resource/pubmed/grant/P50 MH064065-01A10002, http://linkedlifedata.com/resource/pubmed/grant/P50 MH064065-03, http://linkedlifedata.com/resource/pubmed/grant/P50 MH064065-04, http://linkedlifedata.com/resource/pubmed/grant/P50 MH064065-07, http://linkedlifedata.com/resource/pubmed/grant/R01 HD053000-01A1, http://linkedlifedata.com/resource/pubmed/grant/R01 HD053000-02, http://linkedlifedata.com/resource/pubmed/grant/R01 HD053000-03, http://linkedlifedata.com/resource/pubmed/grant/R01 HD053000-03S1, http://linkedlifedata.com/resource/pubmed/grant/R01 HD053000-04, http://linkedlifedata.com/resource/pubmed/grant/R01 HD053000-05, http://linkedlifedata.com/resource/pubmed/grant/R01 MH086633-01A1, http://linkedlifedata.com/resource/pubmed/grant/R01 MH086633-02, http://linkedlifedata.com/resource/pubmed/grant/R01 MH091645-01A1, http://linkedlifedata.com/resource/pubmed/grant/R01 NS055754-01A1, http://linkedlifedata.com/resource/pubmed/grant/R01 NS055754-02, http://linkedlifedata.com/resource/pubmed/grant/R01 NS055754-03, http://linkedlifedata.com/resource/pubmed/grant/R01 NS055754-04, http://linkedlifedata.com/resource/pubmed/grant/R01 NS055754-05, http://linkedlifedata.com/resource/pubmed/grant/R01EB5-34816, http://linkedlifedata.com/resource/pubmed/grant/R01NS055754, http://linkedlifedata.com/resource/pubmed/grant/R21 AG033387-01A1, http://linkedlifedata.com/resource/pubmed/grant/R21 AG033387-02, http://linkedlifedata.com/resource/pubmed/grant/R41 NS059095-01, http://linkedlifedata.com/resource/pubmed/grant/U54 EB005149-01, http://linkedlifedata.com/resource/pubmed/grant/UL1 RR025747-01, http://linkedlifedata.com/resource/pubmed/grant/UL1 RR025747-02S1, http://linkedlifedata.com/resource/pubmed/grant/UL1-RR025747-01
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:author
pubmed:volume
13
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
690-7
pubmed:dateRevised
2011-9-26
pubmed:meshHeading
pubmed-meshheading:20879291-Algorithms, pubmed-meshheading:20879291-Axons, pubmed-meshheading:20879291-Brain, pubmed-meshheading:20879291-Computer Simulation, pubmed-meshheading:20879291-Data Interpretation, Statistical, pubmed-meshheading:20879291-Diffusion Tensor Imaging, pubmed-meshheading:20879291-Humans, pubmed-meshheading:20879291-Image Enhancement, pubmed-meshheading:20879291-Image Interpretation, Computer-Assisted, pubmed-meshheading:20879291-Imaging, Three-Dimensional, pubmed-meshheading:20879291-Models, Neurological, pubmed-meshheading:20879291-Multivariate Analysis, pubmed-meshheading:20879291-Nerve Fibers, Myelinated, pubmed-meshheading:20879291-Pattern Recognition, Automated, pubmed-meshheading:20879291-Reproducibility of Results, pubmed-meshheading:20879291-Sensitivity and Specificity, pubmed-meshheading:20879291-Statistical Distributions
pubmed:year
2010
pubmed:articleTitle
Multivariate varying coefficient models for DTI tract statistics.
pubmed:affiliation
Department of Biostatistics, Radiology, Psychiatry and Computer Science, and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA.
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural