Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:dateCreated
2009-9-9
pubmed:abstractText
Gene Regulatory Networks (GRNs) control the differentiation, specification and function of cells at the genomic level. The levels of interactions within large GRNs are of enormous depth and complexity. Details about many GRNs are emerging, but in most cases it is unknown to what extent they control a given process, i.e. the grade of completeness is uncertain. This uncertainty stems from limited experimental data, which is the main bottleneck for creating detailed dynamical models of cellular processes. Parameter estimation for each node is often infeasible for very large GRNs. We propose a method, based on random parameter estimations through Monte-Carlo simulations to measure completeness grades of GRNs.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-11152635, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-11171388, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-12027441, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-12027443, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-12111738, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-12788545, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-15001784, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-15282746, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-15369668, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-15567710, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-15893979, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-16381960, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-16581059, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-16765384, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-17038513, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-17055477, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-17636127, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-18388954, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-18413610, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-18546476, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-18757046, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-18797474, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-18849996, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-19028486, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-19523466, http://linkedlifedata.com/resource/pubmed/commentcorrection/19698179-9242422
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:issn
1752-0509
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
3
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
83
pubmed:dateRevised
2010-9-27
pubmed:meshHeading
pubmed:year
2009
pubmed:articleTitle
Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network.
pubmed:affiliation
Max-Planck-Institute for Molecular Genetics, Ihnestr 63-73, 14195 Berlin, Germany. clemens.kuehn@biologie.hu-berlin.de
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't